SERVIR-Himalaya

This is an archive page. Please visit servir.icimod.org for recent updates.

SERVIR connects space to villages by generating geospatial information, including Earth observation data from satellites, geographic information systems, and predictive models useful to developing countries. SERVIR is a joint development initiative of the National Aeronautics and Space Administration (NASA) and the United States Agency for International Development (USAID), working in partnership with leading regional organizations around the globe. SERVIR helps those most in need of tools for managing climate risks and land use. SERVIR’s activities in the Hindu Kush Himalayan region are implemented by ICIMOD under the flagship of SERVIR-Himalaya. 

With an overarching goal to improve environmental management and resilience to climate change, SERVIR‐Himalaya has been able to augment the capacity of ICIMOD as a regional resource centre to integrate earth observation and geospatial technologies for improved developmental decision making in the Hindu Kush Himalayan region.

SERVIR-Himalaya draws upon the professional, technological, and entrepreneurial expertise of different SERVIR hubs.

Objectives

  • Strengthen the ability of governments and other development stakeholders to incorporate Earth observations and geospatial technology into decision making
  • Advance free and open information sharing through national and regional platforms and collaborations
  • Develop innovative, user-tailored analyses, decision-support products, and trainings that advance scientific understanding and deliver information to those who need it

Geographical coverage

What is SERVIR?

Stories

Datasets

Glacier data of Afghanistan were prepared on the basis of Landsat imageries from 2010. The glacier outlines were derived semi-automatically using object-based image classification (OBIC) separately for clean-ice and debris-covered glaciers and further manual editing for quality assurance. The attributes of glacier data were derived from SRTM DEM. This dataset was jointly prepared by the Ministry of Energy and Water (MEW), Government of Afghanistan, and ICIMOD under the SERVIR-HKH Initiative.


View Metadata

Glacier data of Afghanistan were prepared on the basis of Landsat imageries from 2000. The glacier outlines were derived semi-automatically using object-based image classification (OBIC) separately for clean-ice and debris-covered glaciers and further manual editing for quality assurance. The attributes of glacier data were derived from SRTM DEM. This dataset was jointly prepared by the Ministry of Energy and Water (MEW), Government of Afghanistan, and ICIMOD under the SERVIR-HKH Initiative.


View Metadata

Glacier data of Afghanistan were prepared on the basis of Landsat imageries from 1990. The glacier outlines were derived semi-automatically using object-based image classification (OBIC) separately for clean-ice and debris-covered glaciers and further manual editing for quality assurance. The attributes of glacier data were derived from SRTM DEM. This dataset was jointly prepared by the Ministry of Energy and Water (MEW), Government of Afghanistan, and ICIMOD under the SERVIR-HKH Initiative.


View Metadata

Glacier data of Afghanistan were prepared on the basis of Landsat imageries from 2015. The glacier outlines were derived semi-automatically using object-based image classification (OBIC) separately for clean-ice and debris-covered glaciers and further manual editing for quality assurance. The attributes of glacier data were derived from SRTM DEM. This dataset was jointly prepared by the Ministry of Energy and Water (MEW), Government of Afghanistan, and ICIMOD under the SERVIR-HKH Initiative.


View Metadata

Land cover and its change analysis across the Hindu Kush Himalayan (HKH) region is realized as an urgent need to support diverse issues of environmental conservation. This study presents the first and most complete national land cover database of Nepal prepared using public domain Landsat TM data of 2000 and replicable methodology. The study estimated that 41.64% of Nepal is covered by forests and 27.77% by agriculture. Physiographic regions wise forest fragmentation analysis revealed specific conservation requirements for productive hill and mid mountain regions. Comparative analysis with Landsat TM based global land cover product showed difference of the order of 30-60% among different land cover classes stressing the need for significant improvements for national level adoption. The online web based land cover validation tool is developed for continual improvement of land cover product. The potential use of the data set for national and regional level sustainable land use planning strategies and meeting several global commitments also highlighted.


View Metadata

The land cover data for the years 1990 have been derived from Landsat TM 30m images using object based image analysis. The study estimated that 45.15% of Nepal is covered by forests and 25.41% by agriculture.


View Metadata

Large landslide dams are one of the most disastrous natural phenomena in mountainous regions all over the world Such dams are formed most commonly in tectonically active settings where high mountains border narrow and steep valleys and earthquakes occur frequently. Landslide dams are very diverse in terms of their formation, geotechnical characteristics, longevity, stability, and flood hazard. The two major causes of landslide dam formation are precipitation and earthquake. About 50% of dam-forming landslides are brought about by rainstorms and snowmelts, 40% by earthquakes, and 10% by other factors Geometry of valley in relation to geometry and volume of debris and discharge of damming river are some of the factors which are responsible for the development of landslide dams. Schuster et al. (1998) mentioned four groups of governing factors responsible for the spatial distribution of landslide dams. They are i) seismic intensity, ii) slope gradient and topography, iii) lithology and weathering properties, and iv) soil moisture and groundwater content. Landslide dams are generated by various types of mass movements, which range from rock falls and rockslides in steep walled, narrow canyons to earth slumps in flat river lowlands. Managing landslide-dam hazards requires an understanding of the temporal and spatial scales on which such phenomena occur. Many previous works on landslide dams have been mainly descriptive in character, and have produced a multitude of documented case studies and inventories (e.g. Costa and Schuster, 1988; Costa and Schuster, 1991). More recent work is focused on quantitative methods of determining the post-formation development, in particular, the controls on dam longevity.


View Metadata

Large landslide dams are one of the most disastrous natural phenomena in mountainous regions all over the world Such dams are formed most commonly in tectonically active settings where high mountains border narrow and steep valleys and earthquakes occur frequently. Landslide dams are very diverse in terms of their formation, geotechnical characteristics, longevity, stability, and flood hazard. The two major causes of landslide dam formation are precipitation and earthquake. About 50% of dam-forming landslides are brought about by rainstorms and snowmelts, 40% by earthquakes, and 10% by other factors Geometry of valley in relation to geometry and volume of debris and discharge of damming river are some of the factors which are responsible for the development of landslide dams. Schuster et al. (1998) mentioned four groups of governing factors responsible for the spatial distribution of landslide dams. They are i) seismic intensity, ii) slope gradient and topography, iii) lithology and weathering properties, and iv) soil moisture and groundwater content. Landslide dams are generated by various types of mass movements, which range from rock falls and rockslides in steep walled, narrow canyons to earth slumps in flat river lowlands. Managing landslide-dam hazards requires an understanding of the temporal and spatial scales on which such phenomena occur. Many previous works on landslide dams have been mainly descriptive in character, and have produced a multitude of documented case studies and inventories (e.g. Costa and Schuster, 1988; Costa and Schuster, 1991). More recent work is focused on quantitative methods of determining the post-formation development, in particular, the controls on dam longevity.


View Metadata

Large landslide dams are one of the most disastrous natural phenomena in mountainous regions all over the world Such dams are formed most commonly in tectonically active settings where high mountains border narrow and steep valleys and earthquakes occur frequently. Landslide dams are very diverse in terms of their formation, geotechnical characteristics, longevity, stability, and flood hazard. The two major causes of landslide dam formation are precipitation and earthquake. About 50% of dam-forming landslides are brought about by rainstorms and snowmelts, 40% by earthquakes, and 10% by other factors Geometry of valley in relation to geometry and volume of debris and discharge of damming river are some of the factors which are responsible for the development of landslide dams. Schuster et al. (1998) mentioned four groups of governing factors responsible for the spatial distribution of landslide dams. They are i) seismic intensity, ii) slope gradient and topography, iii) lithology and weathering properties, and iv) soil moisture and groundwater content. Landslide dams are generated by various types of mass movements, which range from rock falls and rockslides in steep walled, narrow canyons to earth slumps in flat river lowlands. Managing landslide-dam hazards requires an understanding of the temporal and spatial scales on which such phenomena occur. Many previous works on landslide dams have been mainly descriptive in character, and have produced a multitude of documented case studies and inventories (e.g. Costa and Schuster, 1988; Costa and Schuster, 1991). More recent work is focused on quantitative methods of determining the post-formation development, in particular, the controls on dam longevity.


View Metadata

Large landslide dams are one of the most disastrous natural phenomena in mountainous regions all over the world Such dams are formed most commonly in tectonically active settings where high mountains border narrow and steep valleys and earthquakes occur frequently. Landslide dams are very diverse in terms of their formation, geotechnical characteristics, longevity, stability, and flood hazard. The two major causes of landslide dam formation are precipitation and earthquake. About 50% of dam-forming landslides are brought about by rainstorms and snowmelts, 40% by earthquakes, and 10% by other factors Geometry of valley in relation to geometry and volume of debris and discharge of damming river are some of the factors which are responsible for the development of landslide dams. Schuster et al. (1998) mentioned four groups of governing factors responsible for the spatial distribution of landslide dams. They are i) seismic intensity, ii) slope gradient and topography, iii) lithology and weathering properties, and iv) soil moisture and groundwater content. Landslide dams are generated by various types of mass movements, which range from rock falls and rockslides in steep walled, narrow canyons to earth slumps in flat river lowlands. Managing landslide-dam hazards requires an understanding of the temporal and spatial scales on which such phenomena occur. Many previous works on landslide dams have been mainly descriptive in character, and have produced a multitude of documented case studies and inventories (e.g. Costa and Schuster, 1988; Costa and Schuster, 1991). More recent work is focused on quantitative methods of determining the post-formation development, in particular, the controls on dam longevity.


View Metadata

Supported by