Quantcast
Back to news
17 Apr 2019 | News

HKH Science News: Conventional models for glacier melt calculation may not work in High Mountain Asia environments

A recent research undertaken by ICIMOD and partners in central Nepal between 2013 and 2017 provides a guideline for ablation modelling in High Mountain Asia (HMA) environments. Maxime Litt, lead author of the study, said, “We show that the conventional models do not consider a number of important drivers of glacier mass loss at high altitudes and such approaches have to be handled with care.”

1 min Read

70% Complete
An automatic weather station on Mera Glacier, one of two ICIMOD research sites in Nepal. Researchers used data from six automatic weather stations installed on the two glaciers. (Photo: Emmy Stigter/Utrecht University).

The conventional approach of using temperature index models for modelling glacier ablation requires few input variables and relies on simple empirical relations. The approach is assumed to be reliable at lower elevations below 3,500 metres above sea level (masl), where the air temperature relates well to the energy inputs driving glacier melt.

At the high-elevation glaciers in the HMA, the scientists involved in the research observed that incoming shortwave radiation is the dominant energy input and a full surface energy balance model relates only partly to daily mean air temperature.

During monsoon in HMA environments, surface melt dominates ablation processes at lower elevations between 4,950 and 5,380 masl. As net shortwave radiation is the main energy input at the glacier surface, albedo and cloudiness play key roles while being highly variable in space and time. For these cases only, ablation can be calculated with a temperature index model or an enhanced temperature index model that includes a shortwave radiation scheme and site-specific ablation factors. In the ablation zone during other seasons, and during all seasons in the accumulation zone, sublimation and other wind-driven ablation processes are important for mass loss and remain unresolved through the use of temperature index or enhanced temperature index methods.

The research article concludes that empirical models using only one set of parameters for modelling the observed ablation at different sites and periods demonstrate limited performance. The lack of consistency in temperature index or enhanced temperature index parameters between sites and periods is similarly problematic. Furthermore, ablation modeled with a surface energy balance model can diverge from the observations, but since sublimation is important, a suitable value for surface roughness can solve the issue, acting as a tuning parameter.

For details, please see: https://www.nature.com/articles/s41598-019-41657-5

Stay current

Stay up to date on what’s happening around the HKH with our most recent publications and find out how you can help by subscribing to our mailing list.

RELATED CONTENTS

Continue exploring this topic

12 Mar 2018 News
ICIMOD DG Pays Courtesy Call to Chinese Ambassador to Nepal

During the visit, Molden introduced ICIMOD as a regional intergovernmental learning and knowledge sharing centre serving the eight regional member ...

29 May 2017 News
Cardamania: Cardamom Drinks Launched at ICIMOD Haat Bazaar

At the fair, the Brazilian Ambassador to Nepal Maria Teresa Mesquita Pêssoa visited the Himalica stall and tasted the cardamom ...

30 Nov 2018 News
Knowledge sharing on the 3D motion of glaciers in China’s Central Tien Shan region

Li’s work focused on the derivation of high-resolution 3D glacier motion to understand the interaction between a glacial lake and ...

30 May 2017 News
Cooperatives prepare business plans to promote agroforestry in Chitwan, Nepal

An orientation programme was conducted by Bhandari and Bishwa Raj Karki (an independent consultant) to sensitize cooperative members to the ...