Back to news
17 Apr 2019 | Cryosphere

HKH Science News: Conventional models for glacier melt calculation may not work in High Mountain Asia environments

A recent research undertaken by ICIMOD and partners in central Nepal between 2013 and 2017 provides a guideline for ablation modelling in High Mountain Asia (HMA) environments. Maxime Litt, lead author of the study, said, “We show that the conventional models do not consider a number of important drivers of glacier mass loss at high altitudes and such approaches have to be handled with care.”

1 min Read

70% Complete
An automatic weather station on Mera Glacier, one of two ICIMOD research sites in Nepal. Researchers used data from six automatic weather stations installed on the two glaciers. (Photo: Emmy Stigter/Utrecht University).

The conventional approach of using temperature index models for modelling glacier ablation requires few input variables and relies on simple empirical relations. The approach is assumed to be reliable at lower elevations below 3,500 metres above sea level (masl), where the air temperature relates well to the energy inputs driving glacier melt.

At the high-elevation glaciers in the HMA, the scientists involved in the research observed that incoming shortwave radiation is the dominant energy input and a full surface energy balance model relates only partly to daily mean air temperature.

During monsoon in HMA environments, surface melt dominates ablation processes at lower elevations between 4,950 and 5,380 masl. As net shortwave radiation is the main energy input at the glacier surface, albedo and cloudiness play key roles while being highly variable in space and time. For these cases only, ablation can be calculated with a temperature index model or an enhanced temperature index model that includes a shortwave radiation scheme and site-specific ablation factors. In the ablation zone during other seasons, and during all seasons in the accumulation zone, sublimation and other wind-driven ablation processes are important for mass loss and remain unresolved through the use of temperature index or enhanced temperature index methods.

The research article concludes that empirical models using only one set of parameters for modelling the observed ablation at different sites and periods demonstrate limited performance. The lack of consistency in temperature index or enhanced temperature index parameters between sites and periods is similarly problematic. Furthermore, ablation modeled with a surface energy balance model can diverge from the observations, but since sublimation is important, a suitable value for surface roughness can solve the issue, acting as a tuning parameter.

For details, please see: https://www.nature.com/articles/s41598-019-41657-5

Stay current

Stay up to date on what’s happening around the HKH with our most recent publications and find out how you can help by subscribing to our mailing list.

Sign Up

RELATED CONTENTS

Continue exploring this topic

17 Jul 2017 News
A Milestone for Local Water Management in the Koshi Basin

The local community in Saptari, a district in the Terai region of Nepal, is elated with news that their local ...

24 Jul 2019 CBFEWS
Partnering with private enterprise and communities to manage flood risk

Zarnash Bibi, a teacher from Pakistan says that flood early warning systems have put vulnerable communities at ease: “Earlier, we ...

13 Nov 2018 CryoHub
ICIMOD’s partners in Nepal hail successful cryosphere research collaboration

In collaboration with the Department of Hydrology and Meteorology (DHM), the Water and Energy Commission Secretariat (WECS), Tribhuvan University (TU), ...

18 Mar 2022 News
Experts discuss policy perspectives on air pollution solutions with young business entrepreneurs from Bhutan and Nepal

On 4 February 2022, as part our Climate Action4Clean Air (CA4CA) programme, our partners

27 Feb 2016 News
Enhancing the Large Cardamom Production

Large cardamom (Amomum sabulatum Roxb) is the high value cash crop and main source of cash income for farmers in ...

22 Jun 2023 Cryosphere
Flood risk rising despite below-average monsoon

Key messages The 2023 monsoon is projected to be average, even below average. For disaster events, however, ...

10 Nov 2022 News
ICIMOD Mountain Chairs discuss water, energy, and food security in the Eastern Himalayas

Dr Jyoti Prakash Tamang (ICIMOD Mountain Chair 2019–2021, Sikkim University, India) hosted Dr Christopher Scott (ICIMOD Mountain Chair 2020–2022, Penn ...

24 Jul 2019 Cryosphere
Reassessing Tsho Rolpa glacial lake

Tsho Rolpa is a large, potentially dangerous glacial lake in Nepal that has been the subject of extensive research and ...