Back to success stories

Mapping land cover

The Regional Land Cover Monitoring System (RLCMS) addresses challenges in land management – including difficulties in accessing data, lack of transparency in data collection methodologies, inconsistencies in land cover classification, and limited financial and staff resources – by annually generating high-resolution land cover data for the HKH region.

70% Complete

High-resolution annual land cover data for the HKH region

Mapping land cover

The Regional Land Cover Monitoring System (RLCMS) addresses challenges in land management – including difficulties in accessing data, lack of transparency in data collection methodologies, inconsistencies in land cover classification, and limited financial and staff resources – by annually generating high-resolution land cover data for the HKH region. The system uses freely available remotesensing data and a cloud-based machine learning architecture to generate land cover maps through a harmonized and consistent regional classification system.

In 2019, we partnered with agencies in Afghanistan, Bangladesh, Myanmar, and Nepal to customize the RLCMS further as per national requirements, and conducted multiple trainings on the system’s development and use. In Nepal, the Forest Research and Training Centre (FRTC) has taken ownership, having allocated its own resources for field validation of the land cover data before final release. The system will be adopted for official reporting on forest cover and provide a basis for other forest-related applications such as national eco-region mapping. In Bangladesh, after a successful pilot in the Chittagong Hill Tracts the Bangladesh Forest Department (BFD) has rolled out the system for the entire country.

Early involvement of FRTC and BFD staff in the co-development of the system has helped build institutional capacities so that they can take the activity forward independently with limited technical backstopping from ICIMOD.

The RLCMS was developed through a joint collaboration among ICIMOD, Asian Disaster Preparedness Center (ADPC), United States Forest Services (USFS), and SilvaCarbon.

The system uses freely available remote-sensing data and a cloud-based machine learning architecture to generate land cover maps through a harmonized and consistent regional classification system.

butterfly

Chapter 2

Knowledge generation and use

Tailoring climate information

Setting the groundwork for localized climate services in Nepal and Pakistan

Enhanced institutional capacity for water resources management in Afghanistan

Building on institutional commitment and demand-driven training for maximum impact

Science-based regional collaboration through the Upper Indus network 

Members are presently working on basin level issues focusing on climate change and resilience

Leveraging collective power through networks and platforms

Climate change impacts call for transboundary cooperation, collaboration, and knowledge exchange. As a knowledge network, the ...

Learning from a disaster event: Investigating the 2018 Panjshir flood in Afghanistan

In a case illustrative of effective inter-agency collaboration and resource sharing, the flash flood in Panjshir Valley, north-central Afghanistan, on ...

Influencing National Programmes on GLOFs

The HKH region contains the largest concentration of snow, glaciers, and permafrost. The snow and ice-covered HKH Mountains are a ...

Analysing land use change for improved decision making

Recognising the data gaps in land cover and inconsistencies in land cover maps in the HKH ...

Knowledge exchange pay-offs with REDD+

In 2017, we published a manual – Developing Sub-National REDD+ Action Plans: A ...