Back to solutions
2 Jan 2020 | NEPCAT technologies

System of Rice Intensification (SRI)

1 min Read

70% Complete

A method for increasing the productivity of rice by changing the management of plants, soil, water, and nutrients

The System of Rice Intensifi cation (SRI) was developed in Madagascar by Henri de Laulanie, in the 1980s. He worked with Malagasy farmers and colleagues to improve the possibilities of rice production. The practice contributes to both healthier soil and healthier plants, supported by greater root growth and the nurturing of soil microbial abundance and diversity. It is based on a number of well-founded agroecological principles. SRI concepts and practices have also been successfully adapted to upland rice.

SRI involves transplanting very young rice seedlings (usually 8-12 days old with just two small leaves) carefully and quickly so as to cause minimum disturbance to the roots. The seedlings are planted individually, in contrast to the traditional method where clumps of 3-4 are planted together, minimising root competition between the seedlings. The seedlings are kept widely spaced to allow better root and canopy growth, in a square grid pattern at a spacing of at least 25 x 25 cm. Planting can be done even wider at 30 x 30 or 40 x 40 cm and even up to 50 x 50 cm in the best quality soils.

light green: districts in 2007

WOCAT database reference: QT NEP15

Location: Panchkhal, Hokse, Bhimsensthan, Baluwa, and Patalekhet VDCs in the Jhikhu Khola watershed, Kabhrepalanchok district, Nepal

Technology area: ~ 0.1 km2

SWC measure: Management

Land use: Annual cropping

Climate: Humid subtropical

Related approach: Evaluation of SRI through participatory research and development approach, QA NEP15

Compiled by: Madhav Dhakal, ICIMOD

Date: June 2006, updated November 2006

Download PDF

2 Jan 2020 NEPCAT technologies
Polypit nursery

A simple, inexpensive and practical method for raising healthy plant seedlings During the winter in Nepal’s middle mountains, the soil temperature ...

1 Jan 2020 NEPCAT technologies
Drinking water quality improvement through conservation measures

Structural and vegetative measures to improve the quality of drinking water contaminated due to poor sanitation and seepage This technology combines ...

2 Jan 2020 NEPCAT technologies
Riverbank protection

Local materials and knowledge can be used to construct low-cost structural measures that help to prevent the erosion of riverbanks ...

1 Jan 2020 NEPCAT technologies
No-till garlic cultivation

No-till is a farming system in which the seeds are planted directly into untilled soil which still contains the previous ...

2 Jan 2020 NEPCAT technologies
Plastic-lined conservation pond to store irrigation water

A plastic-lined dugout pond to store runoff and household waste-water for irrigation purposes during dry periods Water harvesting technology is very ...

1 Jan 2020 NEPCAT technologies
Better quality farmyard manure through improved decomposition

Collection and proper storage of farmyard manure in heaps or pits Farmyard manure – a varying mixture of animal manure, urine, ...

2 Jan 2020 NEPCAT technologies
Riverbed farming

Riverbed farming can be used to increase household income and to improve the food security of landless and land-poor households ...

1 Jan 2020 NEPCAT technologies
Improved cattleshed for urine collection

Collection of cattle urine in improved cattle sheds for use as liquid manure and organic pesticide Nitrogen is the most important ...