Back to solutions
1 Jan 2020 | NEPCAT technologies

Kiwi fruit cultivation

1 min Read

70% Complete

Kiwi fruit cultivation on sloping land in the mid-hill areas of Nepal can help prevent soil erosion and is a sustainable land management practice. This high value crop introduces biodiversity and improves livelihoods by providing a source of cash income.

The kiwi fruit is native to China. Previously called Chinese gooseberry, it is now more commonly known by its marketing name of kiwi fruit. Kiwi fruits grow on large vines that are similar to grapevines in their general growth and fruiting habits as well as their training and trellising requirements. The fruit normally ripens within 25 weeks after the flowers first appear. The fruits range in weight from 40 to 90 g and can be picked shortly after the first frost in autumn; after that, they can be kept in cold storage for 4–6 months at oC. Kiwi vines can be grown on a wide range of soil types at elevations ranging from 1000 m to 2500 m. The kiwi plant is dioecious, meaning individual plants are either male or female. Only female plants bear fruit, but only when pollinated by a male plant. Vines of both sexes are essential for fruit production, and they must flower at the same time to ensure pollination. One male pollinator vine is required for eight female vines. The vines are commonly supported on sturdy structures strong enough to bear the heavy fruit, which might otherwise break the rather weak vines. T-bars or hitching post trellises are recommended to support the large fruiting area in the form of a canopy and provide easy access to the fruit.

ICIMOD Knowledge Park at Godavari, Lalitpur District, Nepal

WOCAT database reference: QT NEP 30

Location: ICIMOD Knowledge Park at Godavari, Lalitpur District, Nepal.

Technology area: 1 ha

Conservation measure(s): Vegetative

Land Use: Perennial (non-woody) cropping

Stage of intervention: Mitigating land degradation

Origin: Introduced as an experiment (plant origin China)

Climate: Subhumid/temperate

Related approach: Not described

Compiled by: Samden Sherpa, ICIMOD

Date: April 2011, updated March 2013

Download PDF

1 Jan 2020 NEPCAT technologies
Improved farmyard manure through sunlight, rain and runoff protection

Improving farmyard manure by protecting it from direct sunlight, rainfall, and runoff to reduce volatilisation and leaching Farmyard manure is the ...

2 Jan 2020 NEPCAT technologies
Riverbed farming

Riverbed farming can be used to increase household income and to improve the food security of landless and land-poor households ...

2 Jan 2020 NEPCAT technologies
Rehabilitation of degraded communal grazing land

Rehabilitation measures, including eyebrow pits and live fencing, were implemented on degraded communal grazing land to reestablish a protective vegetative ...

1 Jan 2020 NEPCAT technologies
A low-cost polyhouse for tomato production in the rainy season

Smallholder farmers can use polyhouses to produce high demand vegetables, such as tomatoes, and can earn a substantial income from ...

1 Jan 2020 NEPCAT technologies
Improved compost preparation

Improved compost preparation using a range of biomass and waste to produce high value fertiliser Compost can be prepared from a ...

1 Jan 2020 NEPCAT technologies
Black plastic covered farmyard manure

Improving farmyard manure (FYM) by covering it with black plastic sheeting to provide a favourable environment for microbial activities, and ...

2 Jan 2020 NEPCAT technologies
Traditional irrigated rice terraces

Level bench terraces with risers protected by fodder grasses, used for the irrigated production of rice, potatoes and wheat The level ...

1 Jan 2020 NEPCAT technologies
Organic pest management

Promotion of botanical pesticides for organic pest management and liquid manure Production of fresh vegetable is often hampered by pests which ...