Back to solutions
1 Jan 2020 | NEPCAT technologies

Improved compost preparation

1 min Read

70% Complete

Improved compost preparation using a range of biomass and waste to produce high value fertiliser

Compost can be prepared from a wide range of organic materials including dead plant material such as crop residues, weeds, forest litter, and kitchen waste. Compost making is an efficient way of converting all kinds of biomass into high value fertiliser that serves as a good alternative to farmyard manure, especially for crop-growing households without livestock. The compost is often mixed with forest soil, ripe compost from the previous batch, or even a small amount of animal dung as a starter for the decomposition process. The mix of materials determines the quality of the final compost as much as the management of the composting process. Nitrogen-rich fresh materials such as legume residues and many types of weeds and shrubs are mixed with carbon-rich forest litter and cereal residues. Small amounts of wood ash, lime, or mineral fertiliser can help increase or balance the overall nutrient content of the compost.

The compost needs to be turned every 30-50 days depending on the mix and the outside temperature. It should be protected from direct sunlight, rainfall and runoff so as to reduce volatilisation and leaching of nutrients. The material must remain moist at all times to avoid slowing down decomposition and hindering the efficiency of the micro and macro-organisms involved in decomposition. Heaping the compost or collecting the material in a pit helps the compost to reach the temperatures needed (700C) to destroy pests and weeds.

dark green: previous working districts;
light green: districts in 2007

WOCAT database reference: QT NEP7

Location: Nepal midhills

SWC measure: Management

Land use: Annual cropping on rainfed agricultural land

Climate: Humid subtropical

Related approach: Farmer- to-farmer diffusion (QA NEP1); Farmer-led experimentation (QA NEP3); Farmer field school on integrated plant nutrient systems (QA NEP4)

Compiled by: SSMP

Date: January 2007

Download PDF

1 Jan 2020 NEPCAT technologies
A low-cost polyhouse for tomato production in the rainy season

Smallholder farmers can use polyhouses to produce high demand vegetables, such as tomatoes, and can earn a substantial income from ...

1 Jan 2020 NEPCAT technologies
Plastic film technology

Plastic film technology, sometimes called plastic mulching, is an important breakthrough that can transform traditional agriculture into modern agriculture by ...

1 Jan 2020 NEPCAT technologies
Organic pest management

Promotion of botanical pesticides for organic pest management and liquid manure Production of fresh vegetable is often hampered by pests which ...

2 Jan 2020 NEPCAT technologies
Rooftop rainwater harvesting system

A water harvesting system in which rain falling on a roof is led through connecting pipes into a ferro-cement water ...

1 Jan 2020 NEPCAT technologies
Drinking water quality improvement through conservation measures

Structural and vegetative measures to improve the quality of drinking water contaminated due to poor sanitation and seepage This technology combines ...

2 Jan 2020 NEPCAT technologies
Riverbed farming

Riverbed farming can be used to increase household income and to improve the food security of landless and land-poor households ...

1 Jan 2020 NEPCAT technologies
Contour bunding

A traditional low-cost method of soil conservation suitable for sloping land; it promotes water retention and helps prevent erosion. Contour bunding ...

2 Jan 2020 NEPCAT technologies
Tomato grafting

Cleft grafting can be used to produce plants that are resistant to a number of pests and diseases and are ...