AGENDA

Day 1: Fundamentals of solar water pumping systems

Time	Topic	Details
9:00 - 9:30 AM	Introduction to SWP	Overview of SWP technology, key components (solar array, controller, pump), challenges, and types of pumps (submersible, surface).
9:30 -10:30 AM	Solar Energy Fundamentals	Understanding solar radiation (direct, diffuse, reflected), measurement tools (pyranometer, pyrheliometer), and definitions (STC, NOCT).
10:30 -10:45 AM	Break	
10:45-12:00 PM	Solar Panels & Electrical Connections	Clarifying concepts like Watt-peak vs. Watts. Types of panels (poly, mono, thin film), electrical configurations (series, parallel), and panel losses (shading, soiling).
12:00 - 1:00 PM	Lunch Break	
1:00 - 2:00 PM	Controllers & System Performance	Role of MPPT controllers, comparison of MPPT vs. non-MPPT.
2:00 - 3:00 PM	Pumps	Types of pumps, comparisons, selection as per site conditions.

Day 2: Design, implementation, and maintenance

Time	Topic	Details
9:00 -10:15 AM	PURE Platform	Use of PURE platform for identifying RE lift irrigation
		potential and generation Pre-feasibility Study Report
10:15 -10:45 AM	Project Design	Steps in an SWPS project: preliminary information,
	Process	preliminary design, detail survey, and detail design. Includes
		needs assessment and GESI.
10:45 -11:00 AM	Break	
11:00 -12:00 PM	Theoretical	Preliminary calculations for pump/panel size and a
	Sizing &	walkthrough of the detailed technical survey (DTS).
	Technical Survey	
12:00 -1:00 PM	Lunch Break	
1:00 - 2:00 PM	System Layout &	Calculating inter-row spacing, determining panel area,
	Component	creating a single-line diagram (SLD), and selecting
	Specification	cables/protection devices (MCB, SPD).
2:00 - 3:00 PM	Installation &	Best practices for site preparation, installing solar panels,
	Commissioning	grounding, and connecting all system components.
3:00 - 4:00 PM	Maintenance &	Routine maintenance tips for panels and pumps, and the
	Monitoring	importance of a monitoring framework. Final Q&A.