

Integrated disaster risk management for sustainable development in HKK

CONSULTATIVE MEETING ON

Development of multi-hazard risk and loss and damage assessment framework for HKH

8-9 December 2022

#HKHmultihazardL&D

Markus Stoffel & Simon K. Allen

- HKH, a global hotspot for disasters, hosts some of the world's most vulnerable mountain communities.
- Widespread destruction and cascading risks with prolonged and far-reaching consequences.
- Truly integrated and forward-looking catchment-scale approaches critically needed for integrated multi-hazard disaster risk management...
- …extending beyond traditional siloes and recognizing the full interlinkages and interdependencies between hazards, and societal drivers of risk.

Aim: Showcase experiences in Integrated Disaster Risk Management (IDRM) pioneered in Switzerland under the Federal Office for the Environment

Aim: Showcase experiences in Integrated Disaster Risk Management (IDRM) pioneered in Switzerland under the Federal Office for the Environment

What can happen?

Analysis of hazard exposure, vulnerability and risk

What should be done?

Use all chances to influence the risk:

- Avoid risk Land-use planning
- Reduce risk Structural and non-structural measures
- Transfer risk Insurance

What is allowed to happen?

Identification of protection deficits based on protection objectives

⇒ Integrated risk management: continuous assessment/monitoring of risk situation, planning/realization of protection measures and deal with residual risks. It's an universal approach for all hazards.

- Idea: Showcase experiences in Integrated Disaster Risk Management (IDRM) pioneered in Switzerland under the Federal Office for the Environment
- Could these approaches be transferred to HKH?

Integration of historical and tree-ring records to improve the flood risk assessments in poorly gauged regions

Floods in Kullu District, Himachal Pradesh

Indian Himalayas Climate Adaptation Programme, Swiss Agency for Development and Cooperation (SDC)

Creating baselines

Natural disasters recorded in trees

Trappmann & Stoffel (2014) *Geomorphology*

- Area: 5,500 km²
- > 400,000 people
- >5,000 fatalities since 1950
- ➢ 6 river reaches
- 177 affected trees
- > 253 samples

Flood frequency reconstruction

- Frequency : 0.29 event/yr > since 1970: 0.6 event/yr.
- Different phases of activity, e.g. 1977-1981 vs. 1981-1987.
- Provides a more reliable regional flood frequency with reduced uncertainties.

FACULTÉ DES SCIENCES

Flood risk assessment

1) Flood hazard index

500 m

Combine:

- Regional flood frequency (tree rings)
- Channel slope (SRTM DEM)
- Hazard = $Q_{100/}Q_{bank} x$ slope

2) Exposure index

Diff in altitude (m) between Houses and channels

3) Vulnerability index

Socio-economic data from Indian Census 2011

Parvati river

Å

Upper Beas: 289 elements at risk O"22 2 1.1 h Beas river 120 40 18511215 Mid Beas: ()= 6.2 ± 45 h 814 elements at risk 0=1.4±551 Parvati Valley: $A = 1400 \text{ km}^2$ A=1670 Km2 0,00 1732 m2/5 171 elements at risk Q₁₀₀ = 1443 m²/s EWS 3 nDo 000 $(1) = 4.9 \pm 3.4 h$ () = 5.9 ± 4.3 h 0=11±08^h $A = 1200 \text{ km}^2$ A = 1320 km² Q₁₀₀ = 1250 m²/s Q₁₀₀ = 1367 m²/s A=30 km2 = 32 m²/s nDo Lower Beas: 0,00 () = 1.0 ± 0.8 h () = 9.0 ± 6.7 h 225 elements at risk $A = 60 \text{ km}^2$ A = 1785 km² $Q_{100} = 57 \text{ m}^2/\text{s}$ EINS $Q_{100} = 1852 \text{ m}^2/\text{s}$ EWS 2 Sainj Valley: Concentration time Warning system (precipitation) 144 elements at risk Warning system (flow) Flood risk hotspot 20 km Thierten Valley: Dam 113 elements at risk Satellite-based monitoring Flood Risk: Glacier lakes A = Catchment area, Q₁₀₀ = 100 year flood Very low Mediur Very high ((*)) Proposed warning system (precipitation) Proposed warning system (stream flow)

Early warning systems

Landslide trend analyses and hazard modelling in data-scarce regions

Karnali basin, Western Nepal

NERC (Natural Environment Research Council) and DFID (Department for International Development) under the UK SHEAR (Science for Humanitarian Emergencies and Resilience) programme

Landslides in Karnali basin, Western Nepal

Landslide database

- 26,350 mapped
 landslides from Google
 Earth imagery.
- 8,778 single events annually dated 1992-2018 using automated techniques.

Muñoz-Torrero Manchado et al. (2021)

Shallow Landslides ____ Deep-Seated Landslides

Landslides in Karnali basin, Western Nepal

Landslide classification and frequency

ArcGIS toolbox developed for annual dating of landslides using Landsat imagery.

Landslides in Karnali basin, Western Nepal

Hazard and risk modelling

- > 12 different input layers (factors)
- Selection of the best model by creation of Success Rate Curves and calculating Area Under Curve (AUC).
- > 75% accuracy in final classification.

Buildings affected

Landslides in Karnali basin, Western Nepal

Hazard and risk modelling

Final considerations

- A successful implementation of a MHRAF will critically depend on baseline data and...
- > ...truly integrated and forward-looking catchment-scale approaches.
- Innovation will be critical as readily existing approaches may not be easily transferable to HKH
- Switzerland needed 70 years to be where it is today, but now has a functional and widely accepted IRM framework

Thank you!

Markus Stoffel & Simon K. Allen <u>markus.stoffel@unige.ch</u> <u>www.c-cia.ch</u> <u>www.dendrolab.ch</u>

CONSULTATIVE MEETING ON

Development of multi-hazard risk and loss and damage assessment framework for HKH

8-9 December 2022

#HKHmultihazardL&D

Flood magnitude reconstruction

Ballesteros et al. (2011)