

CONSULTATIVE MEETING ON

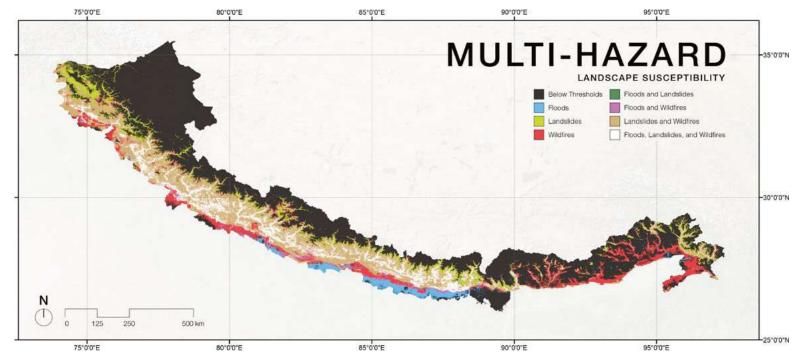
Development of multi-hazard risk and loss and damage assessment framework for HKH

8-9 December 2022

#HKHmultihazardL&D

Methodological Framework of the Multi-hazard Risk Assessment in the HKH Region

Basanta Raj Adhikari Suraj Gautam



- Enable sustainable and resilient mountain development for improved and equitable livelihoods through knowledge and regional cooperation.
- ICIMOD is a regional intergovernmental learning and knowledge sharing centre serving the eight regional member countries of the <u>Hindu Kush</u> <u>Himalaya (HKH)</u> – Afghanistan, Bangladesh, Bhutan, China, India, Myanmar, Nepal, and Pakistan.
- Provide a platform for researchers, practitioners, and policy makers from the region and around the globe to generate and share knowledge, support evidence-based decision making, and encourage regional cooperation


Study area

- The Hindu Kush Himalaya (HKH) system stretches around 3500km, covering an area of almost 4.2 million km²
- The ten major river basins in the HKH had a population around 1.9 billion in the year 2015 with about 240 millions in the mountain and hills (Sharma et al., 2019).
- Region receives intense precipitation in the central and eastern Himalayas between the months of June to September while the western Himalayas receives during winter, resulting into the triggering of a number of natural hazards.

Study area

Rusk, J., Maharjan, A., Tiwari, P., Chen, T. H. K., Shneiderman, S., Turin, M., & Seto, K. C. (2022). Multi-hazard susceptibility and exposure assessment of the Hindu Kush Himalaya. Science of The Total Environment, 804, 150039. https://doi.org/10.1016/J.SCITOTENV.2021.150039

DDRM (France) multi-risk approach Délégation aux Risques Majeurs (DDRM)

- multi risk procedure: seven classes of risk
- components of exposed elements and vulnerability were ignored
- no attention to exposed elements and vulnerability as fundamental parameters

TIGRA Project The Integrated Geological Risk Assessment

- a feasibility project for understanding the possibility to realize tools and procedures for a successful land planning and management of territory
- MHRA: by means of economic indexes reporting the expected economic losses resulting from each hazards

TEMRAP The European Multi-Hazard Risk Assessment Project

- Comprehensive investigation on the environment and human structures and infrastructures
- Exposure & Vulnerability assessment procedures were limited
- Expected Potential = Prob.of occurrence * composed vulnerability *Coeff of exposure

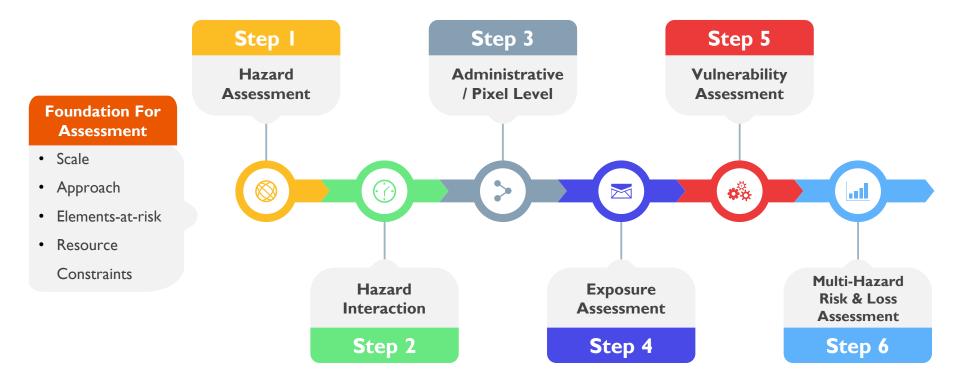
- The risk of hazards is a result of the hazard potential and the vulnerability.
- Delphi method: Based on a weighted combination of population, GDP (national and regional) and fragmented natural areas.
- Tool to define preliminary strategies and policies at European level.

- Impact-weighted multi-hazard disaster hotspot index.
- Global scale and makes the basis of grid GIS environment of spatial representation of dataset
- Rather than one single indicator, build up a series of indexes of increasing complexity

- Harmonized and innovative methodological approach
- Fundamental tool to reduce losses from natural disasters through correct land-use planning and management of rural areas of further development, rural areas with infrastructures and urban areas

- The European Multi-Hazard Risk Assessment Project
- Risk is defined as a function of severity and probability, ٠
- Severity = f(Exposure, Vulnerability(intensity))٠
- Probability = f(Frequency, Time)٠
- Total Risk Index = (Risk Score/Maxm Risk Score) * Community ٠ **Vulnerability Index** (Delmonaco et al., 2006)

Multi-Hazard Risk Assessment in **Tajikistan at District Level**


- an integrated approach
- Risk is the function of Hazard, Vulnerability and Amount . ٠
- ٠ Frequency Class, Exposure Analysis, Physical Vulnerability and Risk Analysis was carried out.
- Hazard Interaction ٠

C. J. Westen, 2019)

Multi-hazard risk Assessment Tools

Approaches	Details
HAZUS MH	• Initially Developed by FEMA focusing the US Continent, Adopted by different emergency management organizations in Singapore, Canada, Australia, Pakistan, Taiwan
	 Multi-hazard tool: Estimating potential losses from EQ, floods, and hurricanes.
	• Environment to estimate physical, social and economic impacts of disasters.
	• Large quantity of the input data and needs adaptation for use at different levels of details
CAPRA	• Central American Probabilistic Risk Assessment and is an open source platform for the risk assessment
	Modules: Hazard, Exposure, Physical Vulnerability, Loss, Additional
	ERN Flood, ERN-Landslide, ERN-Vulnerability
RISK CHANGE	• By Geoinformatics Centre, Asian Institute of Technology (AIT) and ITC University of Twente.
	• Open-source tool for multi-hazard risk assessment and decision making which allows the end-users and
	stakeholders to assess and evaluate the prevailing risks in a designated area and decide the best available risk
	reduction alternatives.

Steps for Multi-hazard risk Assessment

Multi-hazard risk Assessment Framework

Hazard Interaction

Hazard Interaction	Explanation
Independence	Pure coincidence, Triggering event do not interact
	Both spatial and temporal overlay of the impacts of two hazards, but no triggering or dependence relationship.
	Eg: Flood and Landslide
Compounding Events	For the independent events happening close
	Eg: Landslide and floods
Coupled Events	There will be the same trigger. Same area might be affected.
	(Eg: Flash floods and Debris Flows)
Domino or cascading	Primary and a secondary hazard.
	Any hazard might trigger zero, one or more hazards. The second hazard might be the same or different.
	Eg: First Rainfall, then Landslide Damming and followed by flood
Conditional	One hazard changing the condition for the next hazard
	for eg: Forest Fire and Landslide

Multi-hazard risk Assessment Framework

Hazard Interaction

	River Flooding	GLOF	Landslides	Debris Flow	Forest Fire
River Flooding		Caused by	Coupled	Coupled	Independent
GLOF			Chain	Chain	Independent
Landslides				Chain	Independent/ Conditional
Debris Flow					Independent/ Conditional
Forest Fire					

relationship should be read starting from the left and reading horizontally.

Foundation for Assessment

Working in the data scarce region

- Scale
 - National/Regional
 - \circ Local
- Approach
- Elements-at-risk
- Resource Constraints

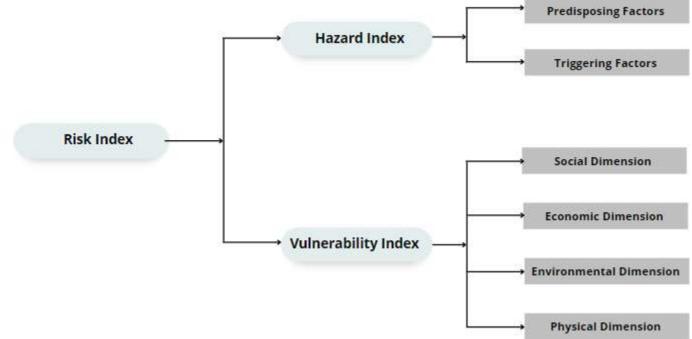
A. Qualitative Method

- Combines hazard map with the elements-at-risk at the GIS environment
- Development of simple-risk matrix.
- Initial screening process to identify hazards and risks.
- Data scarce situation or the quantitative variables are not available.

• Community Perception Model (CPM):

- intuitive judgement of the individual and groups subjected to risk
- Assesses Social, Physical, Economic and Environmental vulnerabilities in consultation with the main stakeholders in the community.
- **Risk,** $\mathbf{R} = \mathbf{H} \times (\mathbf{V} \times \mathbf{cp})$, where

H is Hazard or likelihood (or probability), V is the vulnerability/impact/severity; and cp is community perception of the impact of disasters (Ferrier & Haque, 2003).

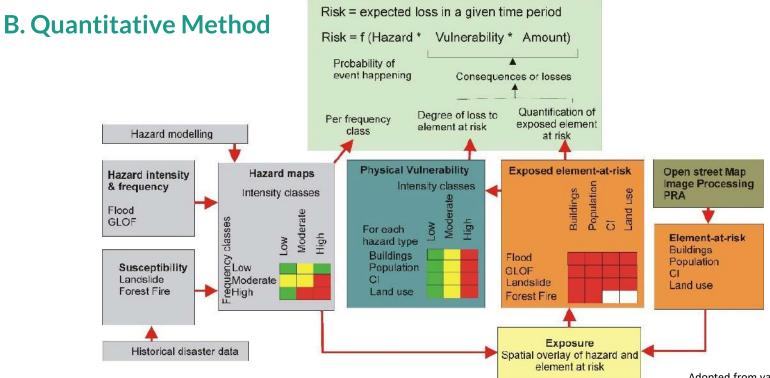

A. Qualitative Method

- Pressure and Release (PAR) Model
 - Assess the disaster risk considering the hazards, identification of the root causes, dynamic pressures (that translate root causes into unsafe conditions), and unsafe conditions (Birkmann, 2006).

• Spatial Multi-Criteria Evaluation (SMCE)

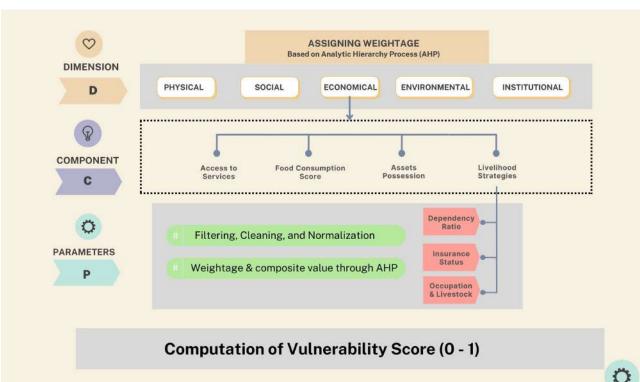
- Uses matrices to calculate a vulnerability index and give qualitative classes (H, M & L)
- Hazard index combined with the vulnerability index.
- Indicators, processed, analyzed, normalized and standardized according to its contribution to the hazard and vulnerability.
- Indicators weighed using pair-wise comparison matrix or Analytical Hierarchical Process (AHP) controlled through the consistency index, combined to obtain the final risk map.

A. Qualitative Method



B. Quantitative Method

- Assessment of risk in the quantitative terms either as probabilities, or expected losses.
- **Engineering Approach** and focuses on the evaluation of the direct physical losses resulting from the impact of the hazards.
- The quantitative approach of multi-hazard risk assessment is also based on vulnerability surface and joint return period of hazards to assess the risk
- **Risk** a function of the probability of the hazard occurrence, the probability of the spatial impact, vulnerability and the economic value of the exposure elements Wei et al. (2022)


B. Quantitative Method

- Probabilistic modelling
 - (taking into account the effect of all possible scenarios):
 - Scenario of damage and losses due to the multiple sources of hazards
 - Probability distribution of hazard magnitudes and different return periods for hazards like floods
- Deterministic/Scenario Modelling :
 - Hazard scenarios: Under similar conditions or regular recurrence intervals, the impacts of each hazards under similar conditions can be assessed.

Adopted from van Westen, 2019

	Population	
Scale	Attributes	Sources
National/Regional Scale	 Population Count Spatial Location, Population Density 	National Census Data, Global Humar Settlement Layer GHSL
Local Scale [Higher attributes of data]	 Population Count Population Distribution in space and time Age distribution Gender Distribution Ethnic Groups and Marginalized Community Person with Disability Income Distribution 	Household Survey, Municipality/Local Unit Profile

	Building Footprints	
Scale	Attributes	Sources
National/Regional Scale	Building Counts,	National Census Data, Open Street Map,
	• Spatial Location,	Cadastral Data
	Typology of Buildings	
Local Scale [Higher attributes of	• Spatial Location,	Household Survey, Structural Assessment
data]	• Construction Typology,	Surveys, Municipal/Digital Profiles, 3D
	Construction materials,	Building Maps, Street View Maps
	• Roof Types,	
	• Number of floors,	
	• Occupancy in House,	
	• Functional Use of Buildings	
	Replacement Cost of Structure	

Agricultural Area			
Scale	Attributes	Source	
National/Regional Scale	Agriculture area	LULC	
Local Scale [Higher attributes of data]	 Type of agricultural crops, Status or stage of the crop production, Classification of crops (Food/Cash) Availability of Crop Insurance, Livestock fertilizer consumption, Irrigation status No of. Tube Wells, 	Household Survey, Municipal / Local Digita Profiles	

	Transportation	
Scale	Attributes	Source
National Scale	Roads in km Railways/metro in km Harbor facilities Airport facilities	National Census Data, Digitization over Satellite images, Transportation Network Profile
Local Scale [Higher attributes of data]	 Type of Roads [Strategic, Materials], Distance in km, Status of Completion 	Municipality Transport Master Plan (MTMP), Surveys

Other Critical Infrastructures	Sewerage Lines,
Hydropower,	Emergency Shelters,
Water Supply Lines,	Schools,
Electricity Lines,	Hospitals,
Telecommunication Lines,	Police Station,
Communication Tower,	Ware House, etc.

DATA TYPE

Data Type: Digital Elevation Model			
Copernicus Global	(DSM) representing the surface of the Earth including buildings,	OpenTopography - Copernicus GLO-30 Digital Elevation	
30m	infrastructure and vegetation.	Model	
	flattening of water bodies and consistent flow of rivers has	https://portal.opentopography.org/raster?opentopoID=OTSDE	
	been included.	M.032021.4326.3	
		European Space Agency, Sinergise (2021). Copernicus Global	
		Digital Elevation Model. Distributed by	
SRTM 30m (I	SRTM uses radar observations to construct DEM.	https://earthexplorer.usgs.gov/	
arcsecond)	void filled data at a resolution of I arc-second (30 meters)		
ASTER	Created by stereo correlation of more than 1.2 million	https://search.earthdata.nasa.gov/search/	
	individual ASTER stereo scenes contained in the archive.	(ASTER Global Digital Elevation Model V002)	
		or https://www.jspacesystems.or.jp/ersdac/GDEM/E/	
ALOS PALSAR	ALOS (Advanced Land Observing Satellite) mission	https://search.asf.alaska.edu/#/	
12.5m	PALSAR (Phased Array L-band Synthetic Aperture Radar)		
	instrument from 2006 to 2011		
ALOS Palsar 30m	Global digital surface model (DSM) with horizontal resolution	ALOS Global Digital Surface Model "ALOS World 3D - 30m	
merged with SRTM	of approximately 30 meters (basically I arcsecond) by PRISM)	(AW3D30)"	
		https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.	
		htm	

DATA TYPE

Land Cover			
World Cover 20m	Sentinel Asia	https://sentinel- asia.org/EO/EmergencyObservation.html	
Worldwide land cover	Global land cover products for 2020 and 2021 at 10 m resolution,	https://viewer.esa-	
mapping	developed and validated in near-real time based on Sentinel-I and Sentinel-2 data.	worldcover.org/worldcover/	
Using NDVI	With LANDSAT/SENTINEL		
ESRI Land Cover	10-meter resolution land cover using Sentinel-2	https://www.arcgis.com/home/item.html?id=d 6642f8a4f6d4685a24ae2dc0c73d4ac	
Land Cover of HKH Region	Consolidated and standardized land cover maps for the Hindu Kush Himalayan region (2000–2021) at the regional level. ICIMOD. (2022)	http://rds.icimod.org/Home/DataDetail?meta dataId=1972511	
Regional Land Cover Monitoring System	Generates spatially seamless and temporally consistent annual land cover maps of the whole HKH region using broad land use	http://geoapps.icimod.org/RLCMS	
(RLCMS)	categories recommended by the IPCC		

DATA TYPE

Historical Disaster Data			
EM-DAT	 Centre for Research on the Epidemiology of Disasters (CRED) Emergency Events Database (EM-DAT) 	<u>http://www.emdat.be/</u>	
	 contains essential core data on the occurrence and effects of over 22,000 mass disasters in the world from 1900 to the present day 		
DesInventar	Methodological tool for the generation of National Disaster Inventories and the construction of databases of damage, losses and in general the effects of disasters.	https://www.desinventar.net/	

Any Queries ?

<u>Contact:</u> Dr. Basanta Raj Adhikari Er. Suraj Gautam bradhikari@ioe.edu.np ersurajgautam@gmail.com