

CONSULTATIVE MEETING ON

Development of multi-hazard risk and loss and damage assessment framework for HKH

8-9 December 2022

#HKHmultihazardL&D

Methodological Framework for the Hazard Risk Assessment in the HKH Region

Basanta Raj Adhikari Suraj Gautam Presentation on Hazard, Exposure, Vulnerability and Risk assessment methodology

Steps for Multi-hazard risk Assessment

Hydro-Meteorological Hazards

- Flood
- Glacial Lake outburst floods (GLOF)
- Landslide
- Forest fire

Flood-hazard Assessment

- The intense rainstorm (540 mm in 24 hours) in July 1993 in the central Nepal destroying more than 52 houses and 62 death tolls (Dhital, 2003; Upreti & Dhital, 1996)
- The 2010 flooding incident in Pakistan with more than 2000 death tolls (FFC, 2010);
- 2013 flooding in Uttarakhand with more than 5000 death tolls (Champati Ray et al., 2016b);
- Pakistan 2022 flooding

Flood-hazard Assessment

Particulars	Derivatives	Source
Elevation	Local drainage direction (LDD), accumulation flux, channel properties, and watershed delineation Channel Depth, Cross-section Channel Width	Digital Elevation Model (DEM)
Channel network	Drainage network from DEM	DEM
Land Surface	 Land Use Map Land Cover classes Vegetation Density, Normalized Difference Vegetation Index (NDVI) 	Satellite images, Open Street Maps
Random Roughness	Mannings 'n'	Landcover
Soil-Material	 Conductivity (k)/permeability Cohesion (c), angle of internal friction Porosity and suction derived from literature values Density 	Soilgrids (https://soilgrids.org/)
Precipitation	Design Rain Storm (Half an hour rainfall record in a grid of 10X10 km)	Integrated Multi-satellite Retrievals for GPM (IMERG) data for different periods

Flood-hazard Assessment

Run Off Model

Model/Tools Selection						
HEC-RAS (Hydrologic Engineering	HEC- HMS (Hydrologic Engineering					
Center- River Analysis System)	Center-Hydrologic Modeling System)					
Open-LISEM	ISIS Free					
Premium: Flood Modeler, TLIFLOW	SOBEK MIKE SHE MIKE Urban					

SELECTING SCALE OF ASSESSMENT

- 25,614 glacial lakes covering an area of 1,444 km² within the five major river basins — Amu Darya, Indus, Ganges, Brahmaputra, and Irrawaddy, including Mansarovar Interior Basin — in the HKH (Maharjan, 2018)
- 2013 GLOF event, suffered catastrophic losses on infrastructures like hydropower dams and resulted in affecting more than 100,000 people in the region (Champati Ray et al., 2016a; Schwanghart et al., 2016).

Variables for any lake

Factors such as Lake area, lake expansion, Volume of the lake, Presence of cascading lakes, Intermittent activity of supraglacial lakes, Dam slope, crest width, Height of the dam, Free board, Erosional activity/landslide on the dam, Existence of buried ice and/or permafrost within dam, distance between glacial lake and mother glacier, slope of the glacier snout, calving from the glacier front, mass movement, intense rainfall, seismic

Wang.et.al. (2011)

Susceptibility index	Hazard	Rank	Assigned
	class		scores
≤0.5	Low	4	0.25
0.5 – 0.7	Medium	3	0.50
0.7– 0.8	High	2	0.75
>0.8 - 1	Very high	I	1.00

Methodology for the identification of Potentially Dangerous Glacial Lakes (PDGL)

S. N	Factors	Critical values	Outburst probability	Assigned scores	S. N	Factors	Critical values	Outburst probability	Assigned scores
		≥0.1 sg. km	High	1	9	Freeboard	<u><1 m</u>	High	1
11	Lake area	0.05-0.1 sg. km	Medium	0.5			<10 m	Medium	0.5
		≥0.02 - <0.05 sa. km	Low	0.25			>20 m	Low	0.25
					10	Frosional activity/landslide on the	1	High	1
2	Lake expansion	>100%	High			dam	0	Low	0.25
-		50-100%	Medium	0.5		dalli			
		<50%	Low	0.25	11	Existence of buried ice and/or	<u> </u>	High	1
3	Volume of the lake	1	High	1		permafrost within dam	0	Low	0.25
	volume of the lake	0	Low	0.5					
4	4 Presence of cascading	1	High	1	12	Distance between glacial lake and mother glacier	< 500 m	High	1
1		0	Low	0.5	11		500-1000 m	Medium	0.5
	lakes						>1000 m	Low	0.25
5	Intermittent activity of	1	High	1	13	Slope of the glacier snout	<u>> 6°</u>	High	1
		0	Low	0.5		0	<u>8°-16°</u>	Medium	0.5
	supraglaciar lakes						<8°	Low	0.25
6	Dam slope	>20°	High		14	Calving from the glacier front	1	High	1
		10°-20°	Medium	0. 5		Carving in one the glacier in one	0	Low	0.25
		<10°	Low	0.25	15	Mass movement	>30°	High	1
7	Crest width	<60 m	High	1	13	Mass movement	<30°	Low	0.25
1	Ci est Width	>60 m	Low	0.25	14	Intense winfell	1	High	1
8	Height of the dam	1	High	1	10	intense rainiali	0	Low	0.25
°	Theight of the dalli	0	Low 0.25		-	High			
-					' I <i>V</i>	Seismic	0	Low	0.25

Methodology to identify Potentially Dangerous Glacial Lakes (PDGL) and prioritization for potential GLOF risk reduction

Landslide-Susceptibility Assessment

Data Preparation for Susceptibility Particulars **Conditioning Factors** Source Historical data, Earth Inventory observation data Digital Elevation Model (DEM) **Topography** Slope Aspect Curvature **Topographic Wetness Index** Stream Power Index Flat areas Lithology Geology **Geological Map** Peak Ground Acceleration (PGA) PGA Maps **Seismology** Fault distance **Meteorology** Average Annual Rainfall Station Data and Integrated Multi-satellite Retrievals for **GPM (IMERG) Proximity** Drainage DEM Road Network Road Map Distance to existing landslides Land Surface Land Use Land Cover (LULC) Map Satellite images, Normalized Difference Vegetation Index **Open Street Maps** (NDVI)

Landslide-Susceptibility Assessment

Methods for Landslide Susceptibility Assessment

Models	Methods	Source
Bivariate Models	Frequency Ratio (FR)	(Avinash & Ashamanjari, 2010; S. Lee & Pradhan, 2007; Poudyal et al., 2010; Pradhan, 2010; Solaimani et al., 2013; Yilmaz, 2009)
	Information Value Model (IVM)	(Luo et al., 2019; Sarkar et al., 2013)
	Weight of Evidence Model (WoE)	(Dahal et al., 2008; Kayastha et al., 2012; S. Lee & Choi, 2004; Vahidnia et al., 2009; Vakhshoori & Zare, 2016)
	Weighted Overlay Model	(Basharat et al., 2016; Khatun et al., 2022; Sarkar et al., 1995; Shit et al., 2016)
	Index of Entropy (IoE)	(Devkota et al., 2013; Jaafari et al., 2014; Mondal & Maiti, 2013)
	Certainty Factors	(Devkota et al., 2013; Hong et al., 2017; Sujatha et al., 2012)
	Fuzzy Logic	(Bibi et al., 2016; Kayastha et al., 2013; Pradhan, 2010)
Multi Variate Models	Logistic Regression	(Ahmed & Dewan, 2017; S. Lee, 2005; S. Lee & Pradhan, 2007; Pradhan, 2010; Raja et al., 2017; Rasyid et al., 2016; Solaimani et al., 2013; Yilmaz, 2009)
	Discriminant Analysis	(Eiras et al., 2021; Murillo-García & Alcántara-Ayala, 2015; G. Wang et al., 2020)
Machine Learning Models	Artificial Neural Network (ANN)	(Poudyal et al., 2010; Pradhan & Lee, 2009; Vahidnia et al., 2009; Yilmaz, 2009)
	neuro-fuzzy	(Oh & Pradhan, 2011; Vahidnia et al., 2010)
	Support Vector Machine	(Huang & Zhao, 2018; Luo et al., 2019; Shahzad et al., 2022)
	Decision Tree	(Pal & Mather, 2003; Poudyal, 2013)

Landslide-Susceptibility Assessment

Methodology for Landslide Susceptibility Assessment

Debris Flow Susceptibility Assessment

Data Preparation for Susceptibility

Data	Source	
Digital Terrain Model		
ASCII based DTM		
Flow Accumulation	-	
Slope	Digital Elevation Model (DEM)	A CONTRACT OF A
Slope terrains in degrees		
Angle of Slope >15 degree is considered suitable for modeling		
Plan Curvature	-	
Relief of the terrain: driving force in the model of debris flow.		
Land Use	Sentinel 2 Image, ESRI Land use	
sensitivity of irrigated lands is higher than the bedrock	Classification	

Debris Flow Susceptibility Assessment

Tools for Debris Flow Suscepibility

Flow R Model

AvaFlow

Flo2D

Open LISEM

Methodology for Debris Flow Susceptibility Assessment

Forest Fire Susceptibility Assessment

Data Preparation for Susceptibility

Datasets	Details	Source	Datasets		Details			Source
MODIS Fire Data	X, Y, Burn Date, Burnt area	NASA/MODIS/FIRMS/	Rainfall		Rainfall			IMERG, Station Data
Near Real time within three hours	confidence	ESDOS Data	Land	Surface	Monthly 1	emperat	ures of day	NASA/MODIS/MODITC3
NASA's MODIS and VIIRS	(1 km)		Temperature		and (1 km)	night	time	
ASTER DEM	Elevation, Slope,	Vertex/Alaska Satellite						
	Aspect	Facility	Roads		Highway	and	associated	ICIMOD / OSM layers
Land Cover	Land Cover Classes of Nepal	ICIMOD			roads			,
TWI = In (As/ TanB)	Topographic wetness index	DEM	Drainage		Rivers			DEM
	(TWI)		Settlements		Cluster o	f Settlem	ients	OCHA Nepal
NDVI	Normalized Diference	Landsat-8 OLI (USGS)						Î.
NIR - R	Vegetation Index		Forest Fire	htt	tp://nepal.sp	oatialapps	<u>s.net/nepal</u>	Forest Fire Monitoring
$= \overline{NIR + R}$				<u>for</u>	<u>restfire</u>			System
NDMI	(Normalized Difference	Landsat-8 OLI (USGS)						
SWIR – NIR	Moisture Index)							
$= \frac{1}{SWIR + NIR}$								

Forest Fire Susceptibility Assessment

Methodology for Forest Fire Susceptibility Assessment

Multi Hazard Maps

CONSULTATIVE MEETING ON

Development of multi-hazard risk and loss and damage assessment framework for HKH

8-9 December 2022

#HKHmultihazardL&D

Methodological Framework for the Exposure, Vulnerability & Risk Assessment in the HKH Region

Basanta Raj Adhikari Suraj Gautam

Exposure Assessment

Exposure Assessment

Q

and thus the attributes for the elements-at-risk needs to be finalized.

The scale of the assessment (national or local) needs to be identified

The spatial vector data of elements-at-risk shall be rasterized taking in due considerations to the georeferencing and Coordinate Reference System

The prepared raster maps of hazard of certain return periods & intensity maps (High, Moderate & Low) is imported in the GIS environment

The combined Exposure map values are then joined with the administrative units to calculate exposed fraction per unit

Exposure Assessment

Exposure of Flood to Element-at-risk (For Administrative Unit A)

Building Count	Flood						
	10 years	50 years	100 years				
Low	Α	D	G				
Moderate	В	E	Н				
High	С	F	1				

Summary of Exposure of Flood to Element-at-risk

Administrative	Flood								
Unit Level	10 years			50 years			100 years		
	Low	Moderate	High	Low	Moderate	High	Low	Moderate	High
Unit 1									
Unit 2									

Vulnerability Assessment

Vulnerability

United Nations (2004) has distinguished four groups of vulnerability factors that are relevant in the context of disaster reduction:

- Physical factors,
- **Economic factors**
- □ Social factors,
- **Environmental factors**,

Vulnerability

- Vulnerability to climate change is 'the degree, to which a system is susceptible to, and unable to cope with, adverse effects of climate change, including climate variability and extremes.
- Vulnerability is a function of the character, magnitude, and rate of climate change and variation to which a system is exposed, its sensitivity, and its adaptive capacity.

Vulnerability

Vulnerability is defined by the Sensitivity and Adaptive Capacity as the 'new paradigm'.

IPCC 2014 Paradigm

Vulnerability Assessment

Vulnerability Curves / Damage Functions

- Relation between the hazard intensities and damage data.
- Damage ratio vs given Level of hazard intensity.
- Different for different types of elements-at-risk

Vulnerability Indices:

- Indicators of vulnerability;
- May not have direct relation with the different hazard intensities.
- Expressing social, economic and environmental vulnerability.

Vulnerability table:

• Relation between hazard intensity and degree of damage

Physical Vulnerability to Floods

Step I: Intensity Classification:

The intensity of floods is classified into four classes: no flooding, Low, Moderate and High

Step 2: Threshold for Damages due to flooding:

The threshold for the depth of water in inundation is considered.

Physical Vulnerability to Flooding

Step 3: Damage Function

Flood	Water	Effect on Buildings	Effect on Buildings Effect on Crops	
No Flood	$\leq 0.2 \text{ cm}$	0% damage	0% destroyed	0% length disturbed
Low	0.2 to Im	A % of building sever damage B % people killed or injured	G % destroyed	K % of length unpassable
Moderate	I – 2m	C % of building sever damage D % people killed or injured	H % destroyed	L % of length unpassable
High	> 2 m	E % of building sever damage F % people killed or injured	I % destroyed	M % of length unpassable

For each element-at-risk, considering the effects summarized above a plot of Depth- Damage curve is developed

Source: https://www.cdema.org/virtuallibrary/index.php/charim-hbook/use-casebook/7-exposure-and-vulnerability/7-2-generating-physical-vulnerability-curves

Physical Vulnerability to Flooding

Step 3: Damage Function

Population

Flood Intensity	Water Depth	Population							
		Mud Masonry		Temporary House		RCC Frame House			
		H	ouses						
		Injured	Death	Injured	Death	Injured	Death		
Low	0.2 to 1m								
Moderate	I – 2m								
High	> 2 m								

For each element-at-risk, considering the effects summarized above a plot of Depth- Damage curve is developed

Physical Vulnerability to Landslides

Step I: Intensity Classification:

The Landslide susceptibility is classified into three classes: Low, Moderate and High.

Step 2: Threshold for Damages for Landslide:

The threshold for the damage due to the landslide is based on the % of exposed elements in a given area.

House Typology	Rural Settings	Urban Settings	Susceptibility in Rural Settings	Susceptibility in Urban Settings
 Adobe Brick-Cement Masonry RCC Frame Temporary 	 No. of people killed R_D No. of people injured R_I 	 No. of people killed U_k No. of people injured U_l 	 Low R_L Moderate R_M High R_H 	 Low U_L Moderate U_M High U_H

Physical Vulnerability to Landslides

Step 3: Damage Function

Population: The Damage function for population is then estimated by multiplication of factors. (nep= number of exposed population) **Roads**

Landslide Susceptibility	Effect on Number of Exposed Population	Effect on Roads			
	Rural Settings	Urban Settings			
Low	R _L * nep * R _d	U_{L} * nep * U_{d}	A % of length of road		
	R _L * nep * R _i	U _L * nep * U _i	destroyed		
Moderate	R _M * nep * R _d	U _M * nep * U _d	B % length of road		
	R _M * nep * R _i	U _L * nep * U _i	destroyed		
High	R _H * nep * R _d	U _H * nep * U _d	C % length of road		
	R _M * nep * R _i	U_L * nep * U_i	destroyed		

For each element-at-risk, considering the effects summarized above a plot of Damage curve is developed

Physical Vulnerability to Landslides

Step 3: Damage Function

For Buildings and Crops

Landslide Susceptibility	Effect on Buildings						Effect Crops	on				
			Ru	ral Setting	S			Urk	oan Setting	js		
Low	Α	%	of	exposed	building	D	%	of	exposed	building	G	%
	de	stro	yed			de	stro	yed			destroyed	
Moderate	В	%	of	exposed	building	Е	%	of	exposed	building	Н	%
	de	stro	yed			de	stro	yed			destroyed	
High	С	%	of	exposed	building	F	%	of	exposed	building	I % destroy	yed
	de	stro	yed			destroyed						

• Vulnerability is multi-dimensional

Physical, Social, Economic, Environmental, institutional

- Vulnerability is dynamic
- Scale to be defined: National/Regional level, Community level, Household level

Tools

- Social Vulnerability Index (SVI)
- Poverty and Vulnerability Assessment (PVA)
- Climate Disaster Risk Index (CDRI)
- INFORM
- Multidimensional Vulnerability Index

Karmkar et. al. (2019)

Table 2: Vulnerability indicators, indicator status and corresponding indicator value

Factor	Indicator	Explanation	Indicator status	Corresponding status value
	Household	People with high household	>3000	1
	income	income is more likely to avoid	2400-3000	2
	(USD/year) ⁴⁷	/cope up against any natural	1200-2400	3
		disaster. Rich people usually	600-1200	4
		holds good houses that resists any damage or even if damaged recovers quickly/easily.	<600	5
	Sources of	People with secure sources of	Service/Remittance	1
	household	income is less vulnerable	Business	2
	income**	(i.e. service). Aquaculture and	Day labor	3
		agriculture are more susceptible	Agriculture	4
		to damage household during cyclones. During and after the disaster the demand and payment of day labor increases, and thus assumed higher chances of damage recovery after the disaster.	Aquaculture	5
	Education ^{36.65}	People with higher level of education	College and above	1
	Concentration	are less vulnerable as they could	Up to high school	2
		understand the forecast and prepare in advance in a better way as compared those of lesser educated.	lliterate	3
Adaptive	Family size	Larger family usually has poor	< 5	1
capacity	(person/hou-	economic strength, often difficult	5-8	2
	sehold)se	to evacuate and higher chances of damage.	> 8	3
	Asset	Ownership of liquid or fixed asset	>10000	1
	ownership	increases the chances/capacity	5000 - 10000	2
	(worth value	to recovery.	2000-5000	3
	in USD) ⁵¹⁻⁵²		<2000	4
			No asset	5
	Duration of	A male household head could	N/A	1
	household	respond to a disaster more rapidly	1-2 Month	2
	head's	and safer manner. The longer	3-5 Month	3
	absence at	absence of male household head,	>5 Month	4
	home per	the poorer the household's ability		
	year	to cope up/recovery against a disaster.		
	Marital	Divorced and widow are more	Married	1
	status ³³	vulnerable than married women	Divorced	2

- Vulnerability indicators can have varying status (different units and scales) and corresponding values, hence it is necessary to normalize the values
- The normalized indicator values for all the indicators will lie between 0 and 1.
- The value 1 corresponds to that maximum vulnerability potential and 0 corresponds to minimum vulnerability potential

Pairwise Comparison matrix using AHP

Normalizing matrix and calculation of factor of weight

> Calculation of Consistency Ratio

$$x_{ij} = x_{ij} - Min_i (x_{ij}) / Max_i (x_{ij}) - Min_i (x_{ij})$$

Where,

 x_{ij} = normalized indicator value of i^{th} women for j^{th} indicator ($0 < x_{ii} < 1$)

 X_{ij} = indicator value of i^{th} women for j^{th} indicator (1< X_{ij} <5)

 $Min_{i}(x_{ij}) = Minimum indicator value for all women for$ *j*th indicator

Multi-Hazard Risk Assessment

Step 1: Development of Multi-Hazard Map

Step 2: Assigning of Value to Hazards (on the scale 1-5) for each Administrative Unit

Multi Hazard Class	Low	Medium	High	Assigned Value
Unit 1				
Unit 2				
Unit 3				

By making a visual inspection of the total percentage of low, medium and high, through the expert judgement, the multi-hazard value of 1,2,3 corresponding to Low, Medium and High classes of Multi-Hazard respectively can be assigned.

Step 3: Exposure Assessment

Element at risk		Hazard classes							
Elements	Unit	Very Low	Low	Moderate	High	Very high			
Population	Number								
Roads	Length in km								
Ruildinge	Number								
Buildings	Number								
Agriculture land	Area in km ²								

Step 4: Comprehensive Vulnerability Assessment

Step 5: Quantification of Multi-Hazard Risk

The risk assessment can be carried out by combining the combination of hazard Index (H) and vulnerability Index (V) of the exposure elements as

Multi Hazard Risk = Multi-Hazard (MH) * Comprehensive Vulnerability Index (V)

Can be done for household level, community level, ward level, regional/ national level

The quantitative multi-hazard risk assessment is based on the following combination of following components (van Westen et al., 2011; van Westen & Abella, 2007):

 $\mathsf{R} = \mathsf{P}_{\mathsf{T}} * \mathsf{P}_{\mathsf{L}} * \mathsf{V} * \mathsf{A}$

 P_T is the temporal (e.g. annual) probability of occurrence of a specific hazard scenario within a given return period in an area;

 P_L is the Spatial probability of occurrence of a specific hazard scenario with a given return period in an area impacting the elements-at-risk. ;

V is the physical vulnerability, specified as the degree of damage to a specific element-at risk

A is the Quantification of the specific type of element at risk evaluated.

Step I: Development of Hazard Map

For flooding

- The hazard intensity, i.e. water depth can be estimated through the established modelling tools
- Frequency can be obtained from historical records of precipitation

For GLOF, Landslide and Forest Fire,

intensity/frequency map is difficult due to its nature or data scarcity, hence
 Susceptibility Mapping.

Step 2: Spatial Probability

- Indicates the chance that a particular location, within one of the three susceptibility classes (high, moderate or low) might be impacted by a hazardous phenomenon (e.g., landslide) within a particular time period (e.g., 10 or 50 years).
- Density of hazardous phenomena within a given time period and susceptibility zone.

Hazard	Type of Modelling	Frequency Classes	Intensity Classes	Intensity Type
Flood	Probabilistic	10, 50, 100 years	3 classes	Water Depth
GLOF	Statistical	3 susceptible classes		Relative Class
Landslide / Debris Flow	Statistical	3 susceptible classes		Relative Class
Forest Fire	Statistical	3 susceptible classes		Relative Class

Step 2: Spatial Probability to Floods

- A flood with larger return period is expected to affect a larger area.
- While for any kind of extreme events like that occurs once in every fifty or hundred years,

Hazard	Return	Spatial	Remarks
Туре	Period	Probability	
Flood	10 years	X	X % of the modelled area is expected to experience flooding with every 10-year return period flooding.
	50 years	Y	Y% of the modelled area will be affected by moderate event of 50 years.
	100 years	Z	For such extreme event, that occurs once every hundred years, Z% of the modelled area will be affected

Step 2: Spatial Probability to Landslides

Assumptions

- Spatial probability that a particular area would be impacted
 = f (expected area of future events, and the area of the susceptibility classes)
- Expected area of future events is based on limited historical records and expert estimation.
- Spatial Probability is zero in low Susceptibility classes
- No. of events that happen in high class is greater than the moderate class.
- No. of events that happen in 100 years return period is more than the event with 50 years return period.

Step 2: Spatial Probability to Landslides

Assumptions

- $\mathbf{X} \mathbf{m}^2$ of area of Landslide event is estimated in 1 km² of area
- Estimation of spatial probability for three return periods: 10, 50 and 100 years.
- Multiplication factor to account missing information.
- Eg: Data available for 50 years, to make calculation of 10 years, we do 10/100.

Step 2: Spatial Probability to Landslides

- X m^2 of area of Landslide event is estimated in 1 km² of area
- Spatial Probability = $\frac{\text{Size of Single Event X}(m^2)}{\text{Per Number of }(km^2)}x \text{ No of Events}$

For Eg: For a major event with 100 years Return period, there would be f number of landslides with an area X in each 1 Km² of High Susceptibility zone,

• Thus, Spatial probability =
$$\frac{X(m^2)}{1 km^2} x f$$

Step 2:	Spatial Pr	obability to Lar	t > e, $d > c$, and $b > a$			
Hazard	Return Period	Susceptibility Class	Size of Single Event (m ²)	No of Events	Per Number of Km ²	Spatial Probability
Landslides	10	Low Moderate	X X	0 a	l l	$\frac{0.0000}{X(m^2)}x a$
		High	Х	b	1	$\frac{1 \ km^2}{\frac{X \ (m^2)}{1 \ km^2} x \ b}$
50	50	Low	Х	0	1	0.0000
		Moderate	×	с	T	$\frac{X(m^2)}{1km^2}xc$
		High	×	d	T	$\frac{X(m^2)}{1km^2}xd$
100	100	Low	Х	0	1	0.0000
		Moderate	×	е	T	$\frac{X(m^2)}{1km^2}xe$
		High	X	f	1	$\frac{X(m^2)}{1km^2}xf$

Step 3: Calculation of Losses

- Losses can be calculated for each hazard type, frequency classes and elements-at-risk combination
- Definition of administrative unit.
- Loss = Exposure x Physical Vulnerability x Spatial probability

Step 3: Calculation of Losses

• Loss = Exposure x Physical Vulnerability x Spatial probability

Step 3: Calculation of Losses

• Loss = Exposure x Physical Vulnerability x Spatial probability

- By the flood depth of 3m, 75% of the building is exposed.
- Remaining 20% of building has 0% exposure,
- Depth Damage Curve for 3m, Damage % is 0.78
- So, the loss of the building W12-3-E-1 is
 Loss = NPR 500000 [(75% * 0.78) + (25%*0)]
 Loss = NPR 292,500

Step 4: Calculation of Losses in Administrative Units

Hazard, EAR, Administrative Units	Unit 1	Unit 2		
	No. of buildings damaged			
Landelido	No of people injured/killed			
Lanushue	Agri. Crops destroyed (hectares)			
	Roads damaged (km)			
	No. of buildings damaged			
Eorost Eiro	No of people injured/killed			
Folest File	Agri. Crops destroyed (hectares)			
	Roads damaged (km)			
	No. of buildings damaged			
CL OF	No of people injured/killed			
GLOF	Agri. Crops destroyed (hectares)			
	Roads damaged (km)			
	No. of buildings damaged			
Flood	No of people injured/killed			
Flood	Agri. Crops destroyed (hectares)			
	Roads damaged (km)			

Step 5: Calculation of Average Annual losses in Administrative Units

Average Annual Losses (AAL): The area under the risk curve can be calculated using following formula

$$\frac{1}{T_1} \cdot L1 + \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \cdot \frac{L1 + L2}{2} + \left(\frac{1}{T_3} - \frac{1}{T_2}\right) \cdot \frac{L2 + L3}{2} + \left(\frac{1}{T_4} - \frac{1}{T_3}\right) \cdot \frac{L3 + L4}{2}$$

Step 6: Identifying Hazard Interaction for Multi-Hazard

Hazard Interaction	Hazard X	Hazard Y	Total Loss	Remarks
Independent Events	Loss X	Loss Y	Loss X + Loss Y	Can be summed up
Compounding Events	Loss X	Loss Y	Min (Total value, Loss X + Loss Y)	Calculation of Loss Y when A has occurred.
Coupled Events	Loss X	Loss Y	Max (Loss X, Lossy)	Calculated together
Conditional Events	Loss X	Loss Y	A* Loss X + B* Loss Y	Calculation of Y is done after A occurs

Thank you

Contact:

Dr. Basanta Raj Adhikari Er. Suraj Gautam bradhikari@ioe.edu.np ersurajgautam@gmail.com