Implementing the WEFE Nexus and Achieving the Sustainable Development Goals

Date: 11/August/2021

Presenter: Dr. Cesar CARMONA-MORENO

WEBINAR
The WEFE nexus approach
International experiences and potential for the Hindu Kush Himalaya

11 August 2021 | Online via MS Teams
14:00-16:20 NPT | 10:15-12:35 CET
WEFE NEXUS
Fundamental Principles
The WEFE NEXUS DEFINED

- **WEFE NEXUS** is an **approach** that **integrates management and governance** across the multiple sectors of food, energy, water and ecosystems.

- **WEFE NEXUS approach** is a way of ensuring **more integrated and sustainable use of resources** that both reaches beyond the traditional silos and can be applied at **all scales**.
Key Principles

• Recognise the interdependence between water, energy, food and ecosystems.

• Understand the Interdependence of resources within a system across space and time.

• Identify integrated policy solutions to optimize trade-offs and maximize synergies across sectors.

• Ensure coordination across sectors and stakeholders.

• Value the natural capital of land, water, energy sources and ecosystems.
A Successful WEFE NEXUS Implementation

- Consider the heterogeneity of the actors involved but also the high level of dialogue requested;

- Consider the strong competences and skills of the professionals involved together with a high level of governance and policy will to reach agreements;

- Consider the complexity and heterogeneity of the ground context: bio-physical, socio-economic, institutional, political, ...;

- Identify and agree on the actual issues, priorities, opportunities and needs to be addressed; and,

- Well define and implement effective mechanisms for exchanging, managing and monitoring information and data that strongly influence decision-making processes.
The WEFE NEXUS – The Data Flow Process
Feeding the NEXUS Dialogues

EVIDENCE

- Inventory of current status
- Identification of Development Priorities

MODELLING PHASE

- Understanding the Energy Balance
- Understanding the Water Balance-Quality
- Understanding “Climate Variability”
- Understanding “Food Security”
- Understanding Ecosystems

NEXUS ASSESSMENT

- Understand the WEFE Interactions Analysis
- Identification Collaboration & Points - Interest

NEXUS POLICY DIALOGUE

- Scenario Development
 - Strategic Framework for WEFE Nexus Security Development
 - Investment Plans and Dev. Measures
 - SCENARIO DEVELOPMENT - Feeding Policy Dialogues with Development Scenarios
 -> Strategic Development Docs.
The WEFE NEXUS
The Process for Intervention Project Identification

Analysis of the project portfolios, previous discussions and strategic development documents with a WEFE profile and establishment of a ranked list of priorities, issues, challenges and opportunities.

- Identification of potential Priority Intervention Areas
- Identification of potential activities, Approx. budget, ...
- Identification of past, current and future activities
- Identification of potential stakeholders in relation to the activities under consideration.

- NEXUS dialogues on potential activities with Stakeholders, States, RB Authority and Donors
- Identification of concrete activities in priority intervention areas
- Feasibility analysis of intervention actions
THE WEFE NEXUS
The e-NEXUS DSS Tool
The e-NEXUS DSS Tool (1)

E-Nexus tool

WEFE NEXUS COMPONENT-SPECIFIC MODULES

Objective: Different thematic modules to improve knowledge and identify gaps and opportunities in the different sectors.

Climate Analysis Module

Assessment of climate variability, frequency and return of extreme weather events

Hydrologic Module

- Quantify water availability in the catchment influenced by climate and management + understand the overall water quality pressure on aquatic ecosystems
- Monthly and annual water availability at sub-basin level
- Water discharge along the river (daily/monthly/annual simulated data)
- Reduction/increase of water availability across the river basin as affected by climate change, landuse change, crop management, water management
- Water quality indicator related to soil and land management such as:
 - Nutrient (N and P) concentration, Sediment yields loss as erosion, Pesticides

Agricultural Module

- Assess current agricultural productivity and simulate it under different scenarios, climate variability and management modes.
- Assess water and nutrient requirements. Identify spatially explicit agricultural strategies for fertiliser management and irrigation

BioEnergy Module

- Evaluate the potential of biomass (residues) for electricity production and analyse its impact on the WEFE
- Annual and seasonal crop residues production
- Bioenergy crop residue specific energy potential at regional level
- Energy demand satisfaction capability by using bioenergy residues resources:
 - Energy demand for irrigation (pumping and water movement)
 - Households and farmers energy demands
- To be included: Comparison with other renewable energy resources (PV and solar)
The e-NEXUS DSS Tool (2)

E-Nexus tool (MOO)

2. **Optimization Module/s Objective:** identifying optimal solutions taking into account multi-objective optimisation - MOO

- These optimisation modules are specifically developed according to local objectives, priorities and challenges of the WEFE
- Modules requires specific:
 1. Setup,
 2. Identification of objectives and constraints for the optimization
 3. Data for the area of interest (Country, Subregion, Transboundary river basin, Continental scale)

Module Optimization

- a) Evaluation of Bioenergy and WEFE NEXUS optimization of water and cropland.
- b) Identification of optimal cropland allocation for food self-sufficiency
- c) Assessing future development scenarios and the impact of additional water demands (irrigation, livestock, urban, industrial) on water availability.

Modularity: thematic models & MOO
Conclusions
CONCLUSIONS

• Flexibility of approach: thematic models can be integrated for a thematic assessment;

• An ad hoc WEFE application can be developed by considering specific links between sectors according to identified priorities;

• The MOO methodology allows to provide answers and alternative solutions to policy makers by assessing long-term benefits with a long-term perspective on simulated indicators of crop productivity, energy production, water quality and quantity;

• A wide range of "optimal solutions" is proposed, allowing the final choice by decision-makers: these optimal solutions are of particular interest to feed the Policy Dialogue;

• MOO modules can benefit from other data and models providing results to integrate/complement/replace those already used by the system.
Thank you