Upper Indus Basin Network Country progress report

He Daming Institute of International Rivers and Eco-security Yunnan University

ICIMOD

1. UIBN-CN framework

Kickoff meeting of the UIBN-CN

UIBN-CN kickoff meeting was held during 15-16 July 2019, Kunming, China.

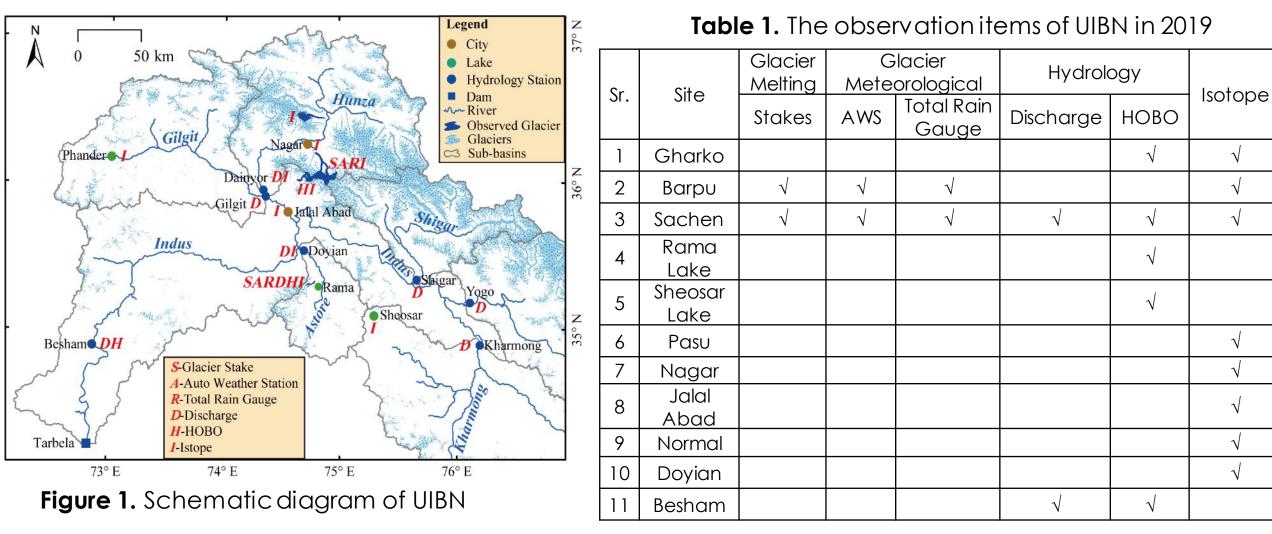
UIB-N China Chapter

Chair of the scientific steering committee : QIN Dahe				
Advisor CN :	Prof. DENG Wei, IMHE/SCNU			
Coordinator:	Prof. HE Daming, YNU			
Co-coordinator:	Prof. DING Yongjian, NIEER			
	Prof. CHENXi, XIEG			
	Prof. NI Guangheng, Qsinghua U			
	Prof. LIU Yansui, IGSNRR			
	Prof. WANG Naiang, LZU			
Joint office :	Prof. LIU Shiyin, YNU			
	Prof. WU Yanhong, IMHE			

Working group

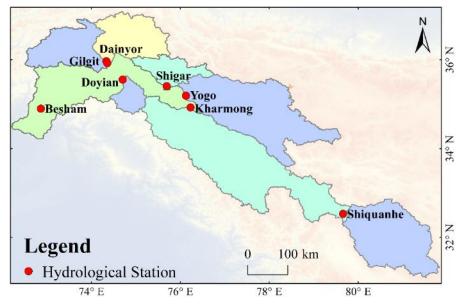
TWG	TWGs Names	Coordinator/Coodinator		
Group 1	Framework of data collection, quality and standardization	YANG Kun (Qsinghua U) ; LI Xing , ITPCAS; Bao Anming, IAP		
Group 2:	Climate change, air pollution variability and black carbon	TIAN Lide, YNU; SU Buda, CCCC; JIANG Dabang, IAP		
Group 3:	Cryosphere monitoring and modelling	ZHANG Yinsheng, ITPCAS; LIU Shiyin, YNU; KANG Shichang, NIEER		
Group 4:	Surface and groundwater hydrology, water availability and demand	CHEN Xi, XIEG; YANG Dawen, QsinghuaU; LUO Yi, IGSNNR		
Group 5:	Understanding and managing hazards and risks	CHEN Ningsheng, IMHE; DI Baofeng, SCU; Meng Xingming, LZU		
Group 6:	Managing gendered socioeconomic impacts through adaptation measures	WANG Zhuo, SCU; FENG Yan, YNU; FANG Yiping, IMHE		

Four keynote sperkers were invited to give the presentations



2. Progress of the 6 Technical working groups

2.1 Progress of the Institute of Tibetan Plateau Research, CAS


4. HOBO Observation 3. Glacier Discharge 2. Glacier Meteorology 1. Glacier Stakes

- 1. 17 stakes installed on Barpu glacier, and stakes on Sachen glacier;
- 2. 1 AWS and 4 Precipitation TRG on Barpu glacier;
- 3. Water table and flowmeter for Sachen glacier;
- 4. HOBO water table for Besham river section

Barpu

Sachen

5. Hydrological station data

6. Isotope collected data

Table 2 Status of isotope water samples in Northern Pakistan during 2018-2019					
Site	Category	Number	Date Period		
II	Rain	72	20181017-20191018		
Hoper(Barpu)	Glacier	12	20181031-20190930		
Deep Classier	Snow	21	20190108-20190603		
Pasu Glacier	Rain	7	20190604-20190814		
	River	54	20181022-20191027		
Dograta Villaga	Rain	62	20181101-20191018		
Bagrote Village	Snow	33	20181210-20190313		
	PMD Station River	45	20181022-20191027		
Nagar	River	58	20181030-20191103		
Jalal Abad	River	50	20181111-20191020		
Doyan	River	53	20181019-20191025		
	Snow	26	20181102-20190519		
Sachen	Rain	32	20181101-20190621		
	River	43	20181026-20190816		
Nomal	River	51	20181105-20191021		
<u>Phander</u> Lake	Disconnected				

Sr.	Sub-basin	Station	Longtitude (°E)	Latitude (°N)	Area (km ²)	Period
1	Shiquanhe	Shiquanhe	79.76	32.46	24870	1994-2000_Yearly
2	Kharmong	Kharmong	76.23	34.93	70030	1982-2012_ Daily
3	Shigar	Shigar	75.67	35.35	6994	1985-2001_Daily
4	Shyok	Yogo	76.13	35.19	33157	1974-2017_Daily
5	Hunza	Daniyor	74.34	35.97	13717	1966-2012_Daily
6	Gilgit	Gilgit	74.36	35.92	12671	1970-2016_Daily
7	Astore	Doyian	74.70	35.55	3990	1974-2017_Daily
8	UIB_D	Besham	72.86	34.90	164867	1980-2017_Daily

5. Update of the hydrostations at 8 UIB sub-basins;

Google Earth

Indus River

HOBO Site

Indus River

Dandai

HOBO

Site

Hydrological Station Site

G

Shung

Besham City

 (\mathbf{H})

N90

Damorai

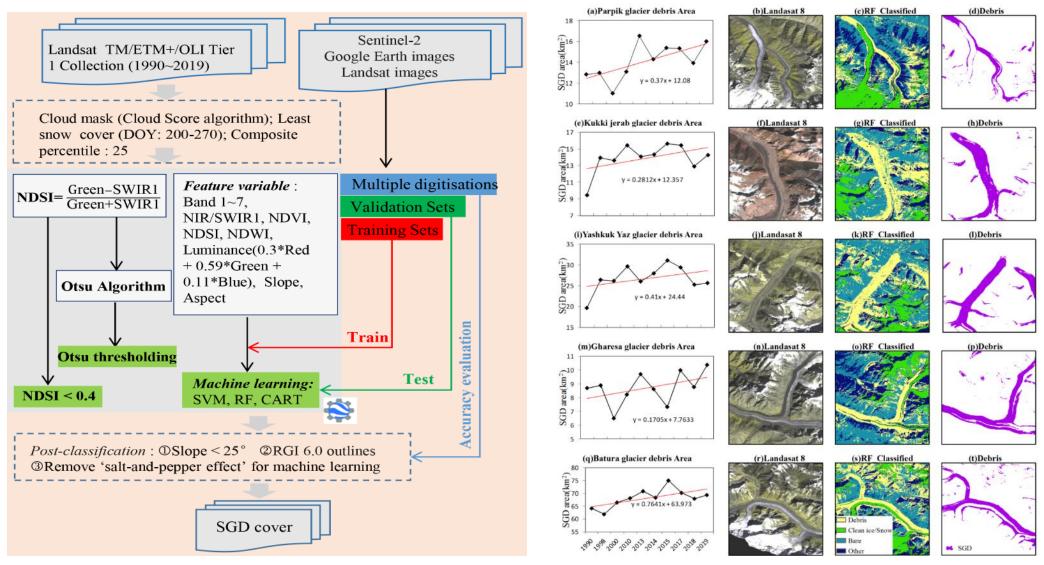
Karora

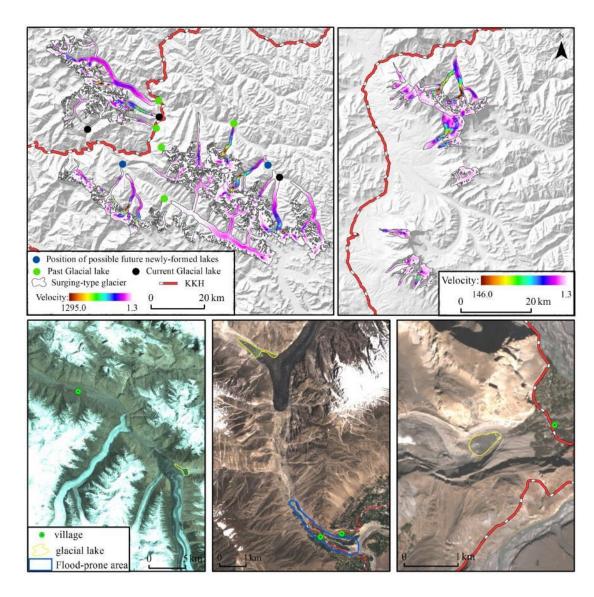
Besham

PTDC

6. Water sampling for isotope at UIB WAPDA stations

2.2 Progress from Yunnan University


Installation of 1 met-station and 1 stream flowmeter at Batura Glacier


Mapping the debris cover of glaciers in Hunza Valley

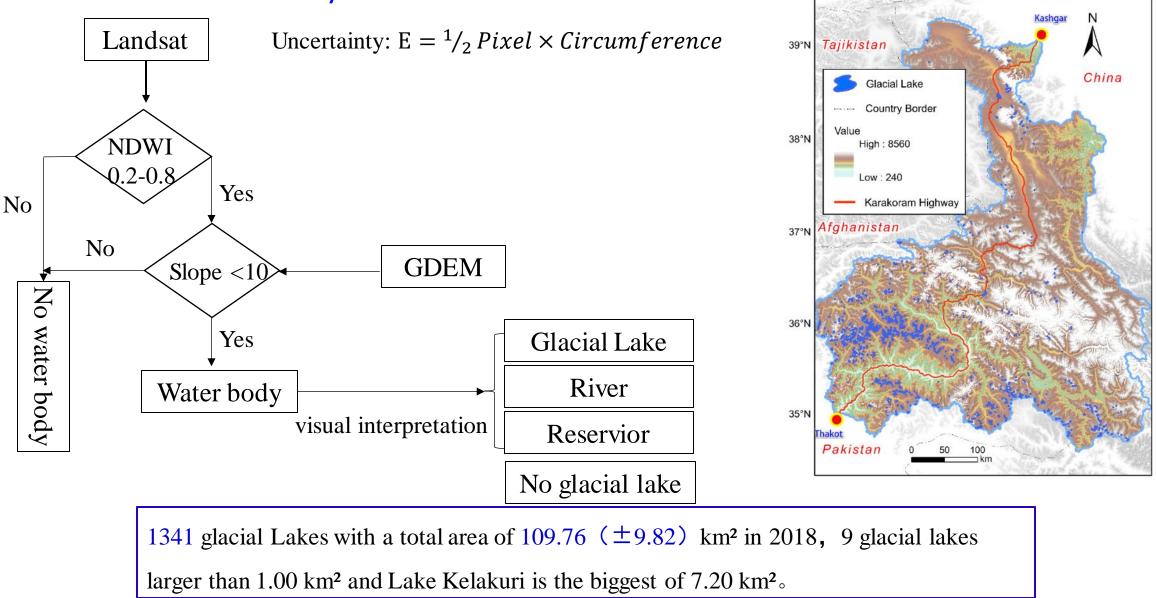
Debris cover tended to increase in area in Hunza

Review of the glacial hazards in Hunza Valley

Surface velocity of surging glaciers, lake outburst floods in Hunza Valley: disaster triggered by periodic surges and outburst floods

2.3 Progress of the Northwest Institute of Eco-environment and Resource, CAS

73°E


74°E

75°E

76°E

77°E

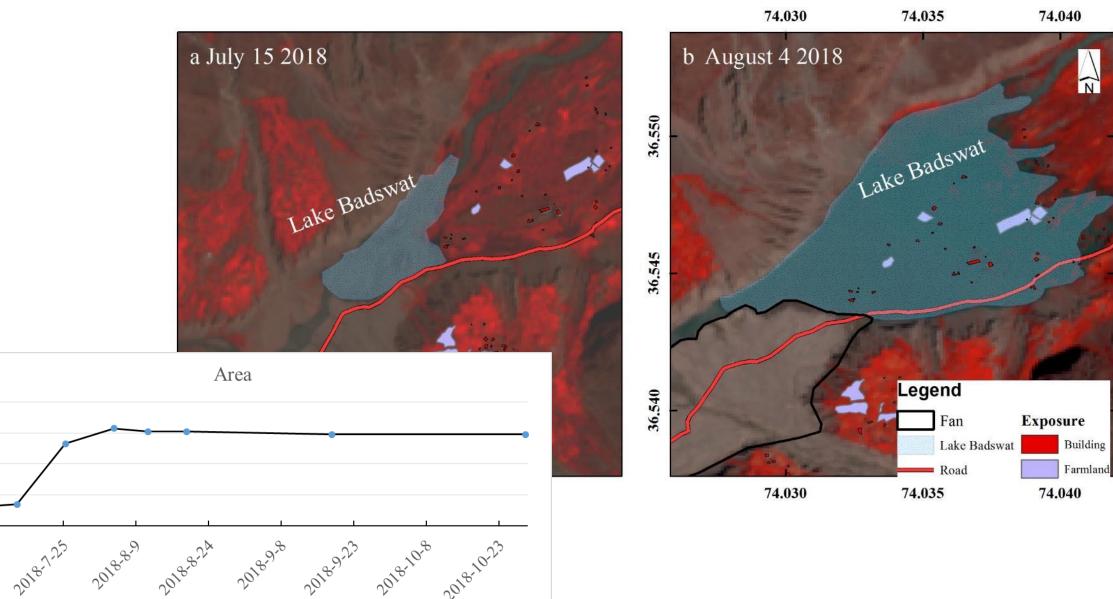
Glacier Lake Inventory in CPEC

Lake Badswat area-expanding and outburst

0.8

0.6

0.4


0.2

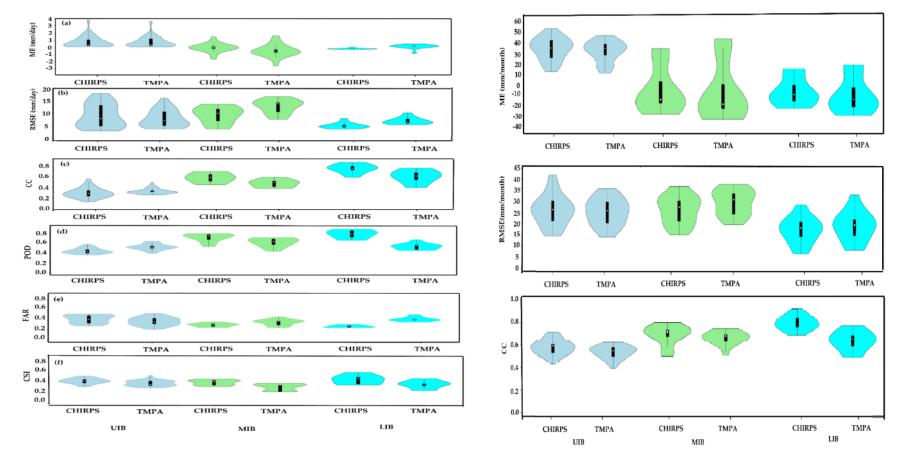
0

20187-10

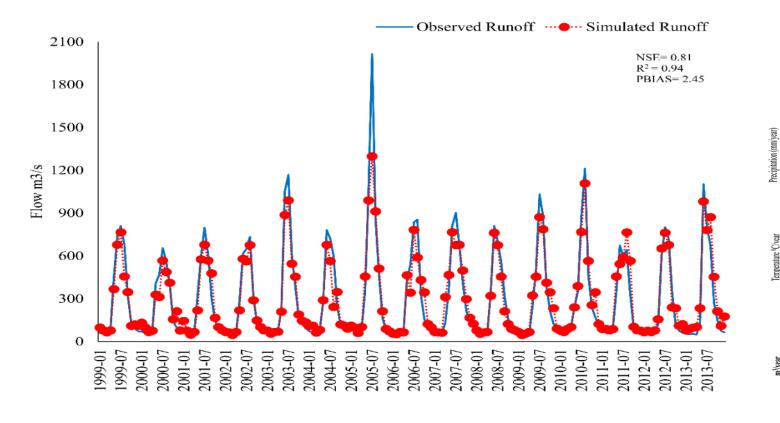
 (km^2)

Lake area

36.550


36.545

36.540


2.4 Progress of Tsinghua University

1) Hydrological modeling for UIB based on SWAT

Precipitation data: Climate Hazards Group Infrared Precipitation Satellite (CHIRPS), TRMM Multi-Satellite Precipitation Analysis (TMPA), The Climate Forecast System Re-analysis (CFSR)

CHIRPS has bad performance in UIB as compared to TMPA but good in low (LIB) and middle (MIB) reaches of Indus Basin

Time (Months)

SWAT simulation for UIB, CHIRPS demonstrates better for runoff generation in Gilgit

Increased precipitation and weak change in air temperature controlled the mild fluctuation of the runoff in UIB

25.5

24.5

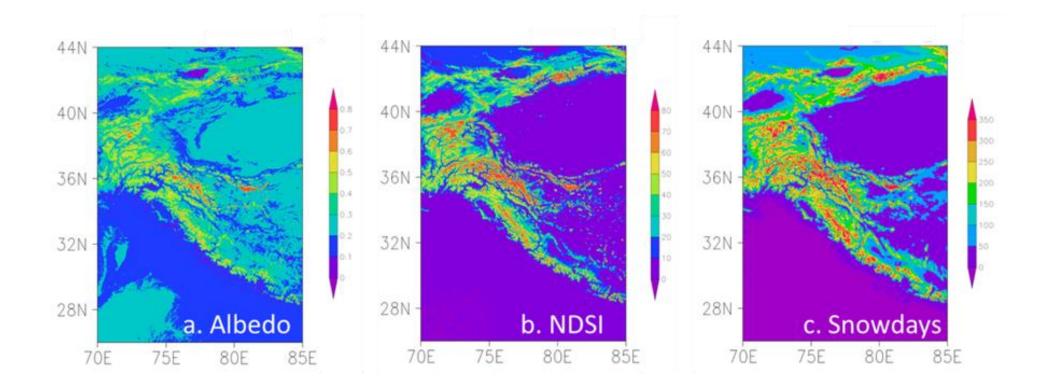
23.5

22.5

Temperature ⁰C/year

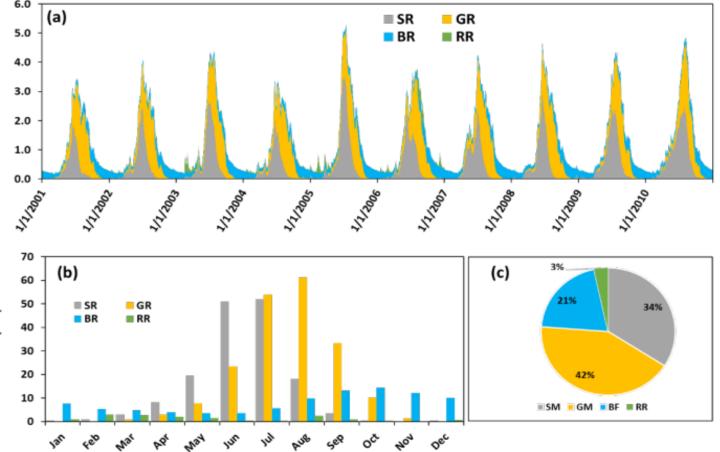
m³/year Year

Year


Year

2) Evaluation of precipitation data in western Tibetan Plateau

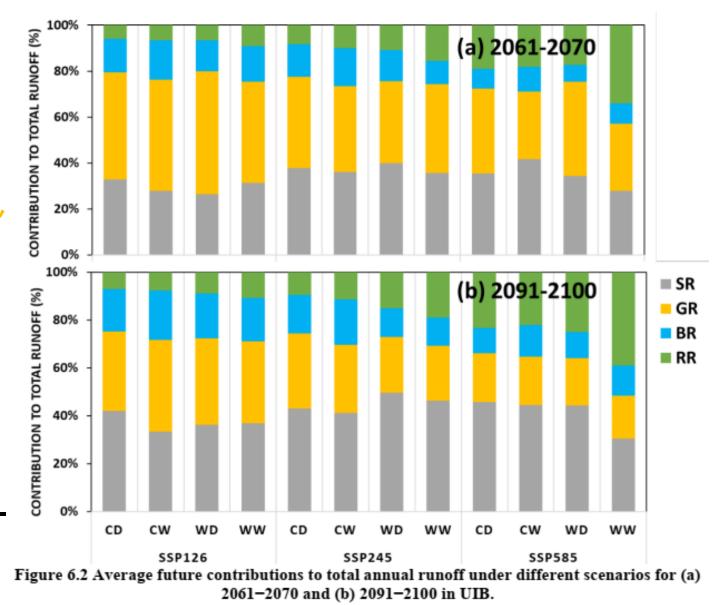
TABLE 1 Information on the nine gridded precipitation data sets used in the study


Fusion data	Data sets	Method and input data sources	Spatial resolution	Analysed period	References
	APHRODITE	Original rain-gauge data, individually collected from local organizations.	0.25°	2001-2013	Yatagai <i>et al.</i> (2008), Yatagai <i>et al.</i> , 2012)
	GPCC	Near real-time GTS database updated monthly, non-real time data updated occasionally, available global and regional collections of climate data.	0.5°	2001-2013	Becker et al. (2013)
Satellite data	TRMM	TMI merged with other microwave satellite data (SSM/I, AMSU-B and AMSR-E), infrared data from GEO satellites and GPCC & CAMS gauge estimates.	0.25°	2001-2013	Huffman et al. (2007)
	GPM	GMI, AMSR-2, SSMIS, MADRAS, MHS, advanced technology microwave sounder.	0.1°	2015-2017	Hou et al. (2014)
Reanalysis _ ERA5 data _ ERA-interin	ERA5	Produced using 4D-Var data assimilation in CY41R2 of ECMWF's integrated forecast system (IFS).	0.25°	2001-2013	Hersbach et al. (2018)
	ERA-interim	Model output assimilated with satellite observations	0.75°	2001-2013	Dee et al. (2011)
High-res	JRA-55	Produced with the low-resolution (TL319) version of JMA's operational data assimilation system.	1.25°	2001-2013	Kobayashi et al. (2015)
	HAR10	Generated by dynamical downscaling of global analysis data (FNL) using the WRF model	10 km	2001-2013	Maussion <i>et al.</i> (2010), Maussion <i>et al.</i> , 2014)
	HAR30	Generated by dynamical downscaling of global analysis data (FNL) using the WRF model	30 km	2001-2013	Maussion <i>et al.</i> (2010), Maussion <i>et al.</i> , 2014)

frequent snowfall events identified by MODIS albedo and SCF and IMS snow cover days , close to HAR10

2.5 Progress from Institute of Geographical Science and Natural Resource Research, CAS

Hydro-glacier modeling-SPHY model: glacier and snowmelt dominate the river runoff in UIB


gure 5.8. The distribution of total runoff components at (a) daily and (b) monthly time es. (c) average contributions of runoff components to total runoff at annual scale in UIB n 2001 to 2010. Here, SR = Snowmelt runoff; GR = Glacier melt runoff; BR = Baseflow runoff; RR = Rainfall-runoff.

By 2061-2070, the UIB will see an increase in snowmelt and decrease in glacier runoff.

SSP126 : snowmelt, $-15\pm10\%$, glacial melt, $17\pm8\%$, baseflow, $-26\pm9\%$, and rain runoff, $85\pm11\%$

SSP245 : $6 \pm 11\%$, $-7 \pm 9\%$, -27 $\pm 7\%$, and $181 \pm 33\%$

SSP585 : $8 \pm 10\%$, $-13 \pm 12\%$, -55 $\pm 7\%$, and 416 $\pm 44\%$

3. Projects related to UIB researches

Projects from NSFC

- 1. ZHANG Yinsheng, ITPCAS, On the interactive between westerlies and Indian Monsoon and their impact on water resource, 2016.11-2019.10
- 2. YANG Weikang, XIEG, Assessment of Ovis Ammon Polii to its environment under a changing climate and the identification of it transboundary migration, 2017.1-2019.12
- 3. XU Jianchu, Kunming Institute of Botany, CAS, Ecological Callendar and its climate adaptation in Pamir Plateau, 2016.4-2.19.3
- 4. MENG Xinming, Lanzhou University, Monitoring of land surface deformation and the assessment of related hazards along CPEC based on sequential InSAR technique, 2017.1-2019.12
- 5. CHEN Xiaochen, IMHE, Identification of major geological Hazards and the risk assessment along CPEC,,2016.11-2019.10
- 6. SU Buda, Projection and attribution of streamflow composition at mountain rivers in China and Pakistan, 2016. 11-2019.10
- 7. LIU Shiyin, Yunnan University, Glacier changes and their hydrological impact under warming climate along the CPEC, 2018.1-2020.12

Project from Chinese Academy of Sciences

8. ZHANG Yinsheng. ITPCAS, Level A of the Strategic Priority Research Program of CAS

4. Education and human resource development related to UIB researches

- 2 postdoc candidates (YNU) and 1 doctor candidate (IGSNRR) from Pakistan working for UIB
- Training courses for graduates from Pakistan and Nepal sponsored by ITPCAS

5. Future plans for the country chapter

- 1 Continuous observations of the existing network in UIB.
- ② New project submission to NSFC for UIB
- ③ New postdoc and doctor candidates from Pakistan and Nepal
- ④ Online courses for UIB graduates
- ⑤ End of 2020 for UIBN-CN meeting

Thank you

