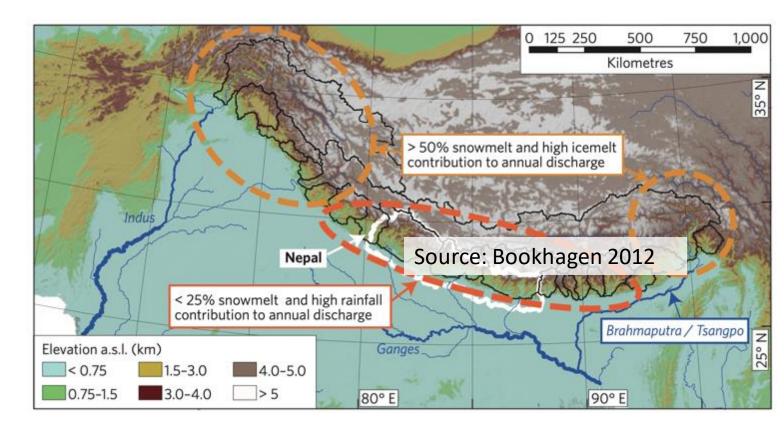
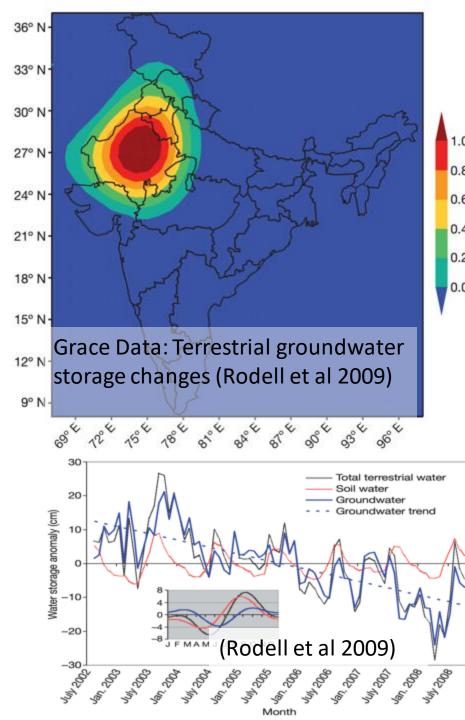
2n^d Regional UIBN Annual Meeting (RUAM) 26-27January 2021

Dynamic groundwater resources of upper Indus basin


Dr. Gh. Jeelani Professor and Head

DEPARTMENT OF EARTH SCIENCES UNIVERSITY OF KASHMIR HAZARATBAL SRINAGAR (J&K) 190006

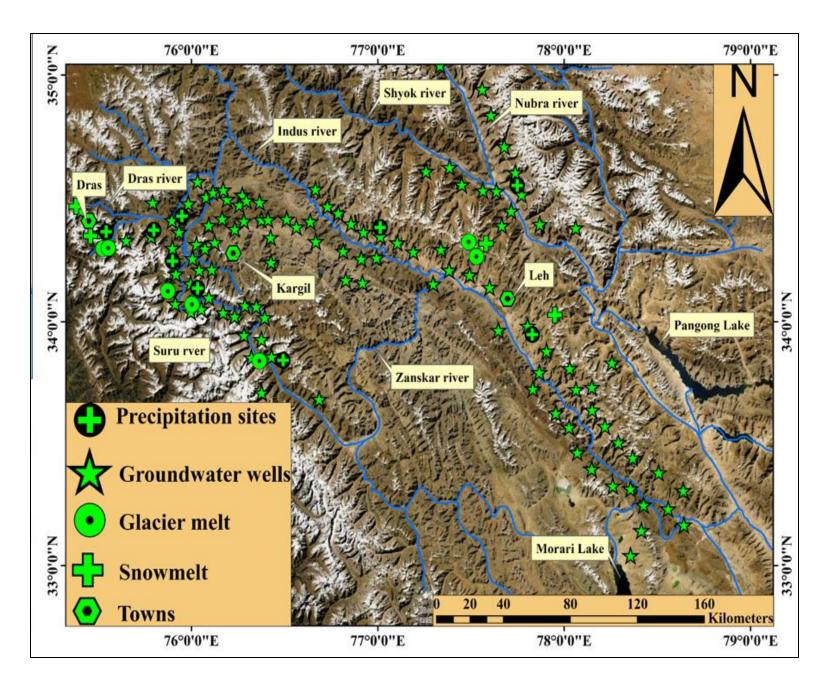
Pangong Lake


How to enhance the effectiveness of data collection...? How will climate change and Cryospheric dynamics impact the water availability..?

- Himalayas: fresh water towers of the world
- Five major rivers of south Asia-supply fresh water to 1.5 billion people
- Western Himalayas->50% snow and ice melt to annual discharge

- Supply critical water resources for agriculture, hydropower generation, and other purposes.
- Shift from surface water to groundwater-led to the depletion of groundwater resources in the down stream areas.

- The rate of groundwater withdrawal (global) is more than the aquifer replenishment.
- Irrigation-some IRF but most of the GW withdrawn is lost in the form of runoff or/ evapotranspiration.
- Groundwater withdrawal for irrigation and other purposes in Rajasthan, Punjab and Haryana are depleting the groundwater reserves @ 4.0 cm yr⁻¹ (17.7 km³yr⁻¹) (Rodell et al 2009)
- Effective measures should be taken to minimize the continuous depletion (Rodell et al 2009)

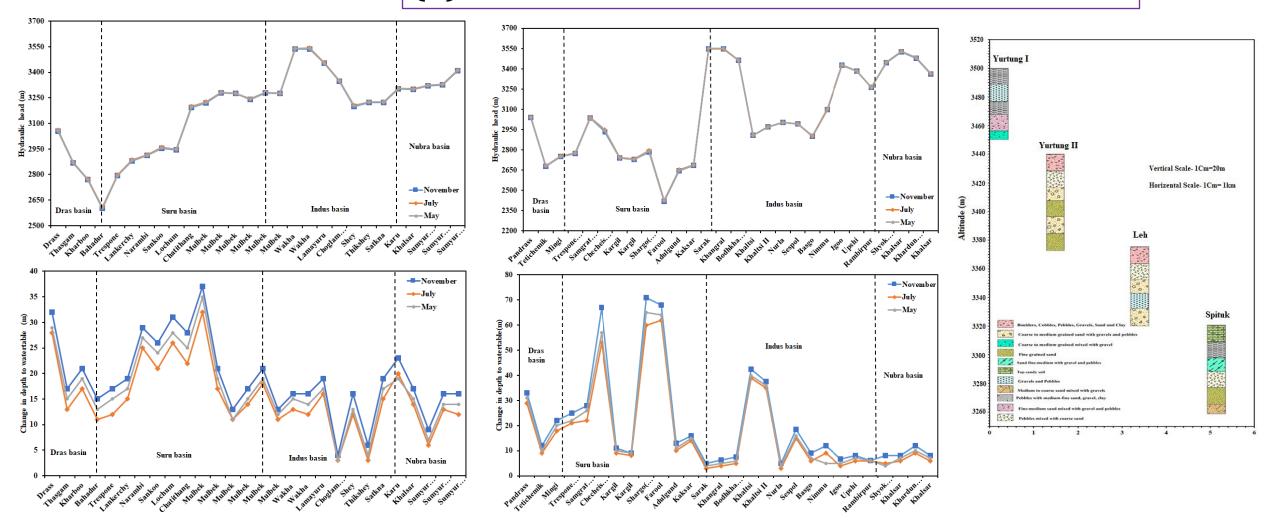


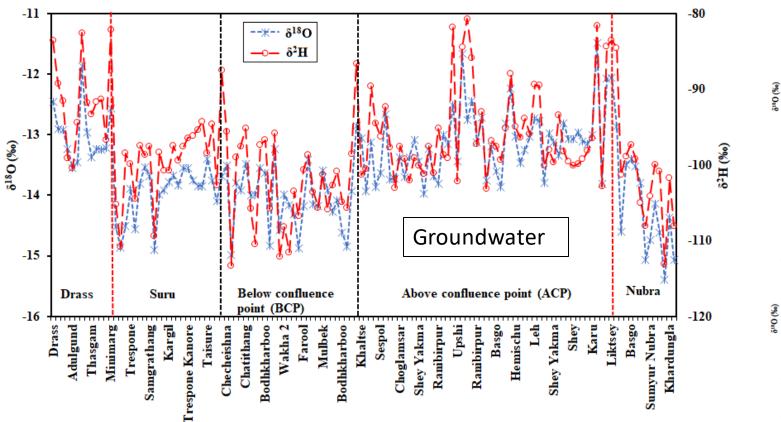
- The contribution of melt water to groundwater storage is difficult to estimate in complex mountain terrain (Himalayas).
- Spatiotemporal resolution of the current satellite system is too coarse to fully distinguish between groundwater, ice melt, and sedimentological and tectonic processes (Bookhagen, 2012).
- Need to have more observational and field data.
- Need to put more instrumentation in representative catchments to generate more baseline data for hydrological modelling and transferring the data/knowledge to other least accessible catchments of the upper Indus basin.
- Impact of climate change and cryospheric dynamics on water availability will be better addressed.

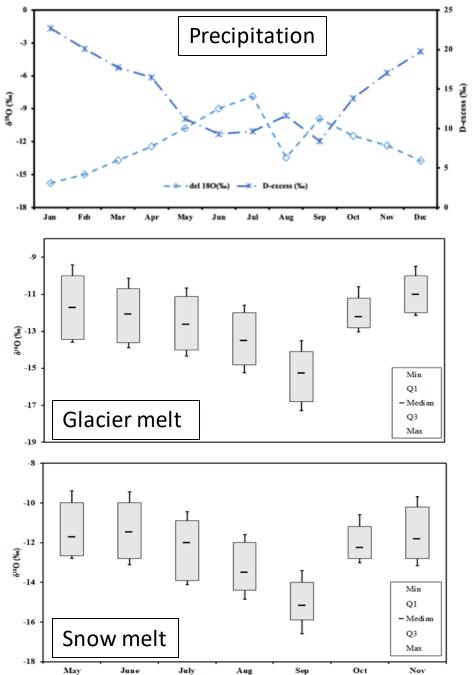
Field Campaigns

We used hydrogeological data and stable water isotopes of meteoric waters:

 to estimate the dynamic and static groundwater resources of UIRB –Ladakh
 To identify and estimate the sources of groundwater
 (Lone et al 2021)




Major Results


Hydrogeology and Water table fluctuation in (a)Alluvium (b)Hard rock

						Alluvium		Har	d rock
				Basin	S	(mm yr ⁻¹)	Km ³ yr ⁻¹	(mm yr ⁻¹)	Km ³ yr ⁻¹
	Dynamic Groundwater			Drass	5	91.7	0.31	73.92	0.25
	resources: Based on water table fluctuations			Suru		98.07	0.83	91.72	0.77
water table fluctuations				Indus	5	43.18	0.90	22.90	0.46
				Nubra	a	83.33	0.000012	47.88	0.000068
				Total		316.28	2.04	236.42	1.48
Basin	Alluvium			Hard Rocks					
	MCM	Km ³	MCM			Km ³	Total Gr		
Drass	31,746	31.7	4,48,419			448.41	resources		
Suru	33,744	33.7	5,94,856			594.85	 ✓ Average saturated thickness in unconsolidated material=45m ✓ * Average saturated thickness in 		
Indus	61,085	61.0	6,68,246			668.24			
Nubra	29,995	29.9	4,00,122			400.12	consolic	m	
Total	1,56,570	156.3	21,11	,642		2322.6			

Variation of δ^{18} O and δ^{2} H in precipitation, Glaciers, Snow and Groundwater

EMMA: Two component and three component mixing model: Contribution of rain, snow and glacier melt to groundwater estimated

	April				August		October				
Basin	Snow	Glacier	Rain	Snow	Glacier	Rain	Snow	Glacier	Rain		
	(%)										
Dras	48±5.1	38±3.2	14±2	29±2.3	53±4.3	18±1.4	21±2.2	66±11.3	13±2.1		
Suru	51±7.1	39±3.4	10±1.2	27±2.1	55±3.7	18±1.9	25±2.4	59±9.3	16±1.8		
Indus	49±4.2	31±2.5	20±2.2	34±2	43±2.9	23±2.1	22±1.6	64±13.1	14±2.6		
Nubra	48±6.1	36±3.2	16±2.1	34±3	49±2.1	17±2.1	23±2.7	61±8.9	14±1.2		

Lone et al.. Under review (STOLEN)

- The glaciers in the Himalayas are thinning and retreating spatially variable and complex (Fujita and Nuimura, 2011; Scherler et al 2011, Bolch et al 2012)
- Like climate change, glacier responses are heterogeneous, oscillatory, and trending as well (Kargel et al 2011).
- Snow in western Himalayas (brought by the western disturbances in winter) contribute significantly (~60%) to the stream/river flow (Jeelani et al 2012, 2017...) and groundwater.
- Glacier contribution to discharge is significant (Kaser et al 2010), key contributor in summer.
- Keeping in view the significance of melt water to water resources (surface and GW)-any decrease in Cryospheric reserve as a result of climate change, will have a strong impact on the timely availability of fresh water across the basin.
- Decrease in GW storage could have strong impact on river flow in late summer and winter (when GW contribution maintains the flow)—water availability, hydropower generation, etc.

- Baseline study in Upper Indus Basin
- Gives an idea of the importance of different sources of groundwater
- Significance of snow and glacier melt in the region
- How vulnerable are the groundwater resources under changing climatethinning of glaciers and decrease in the seasonal snow cover?
- Help modelers to design and calibrate the models for detailed understanding of hydrology of whole upper Indus basin
- Collaboration with other country chapters is needed to better understand the groundwater system in Upper Indus Basin across the political boundaries

Drung-Durung Glacier

Thanks