

Climate change and its impact on glaciers and glacial lakes in Nepal Trend in annual maximum temperature in Nepal was significantly positive, at 0.056°C/yr over 1971-2014 (DHM 2017) Greater warming rate of 0.086°C/year in the Higher Himalaya over that period Mountains are warming more than the plains +/- SD RCP8.5 +/- SD RCP4.5 Glacier area has decreased and number increased Mean Temperature RCP8.5 Aean Temperature RCP4.5 due to retreat, shrinkage and fragmentation. ce Period • Glacial lake number and area has increased • Glacier areas in Nepal decreased by 24% in the 33 years between 1977 and 2010 increase by 1.3 to 1.82 °C in The total lake area increased by 12% in the Koshi the long-term period (up to 2.5 °C in some places) basin, 8% in the Gandaki basin, and 1.27% in the

Glacial Lakes

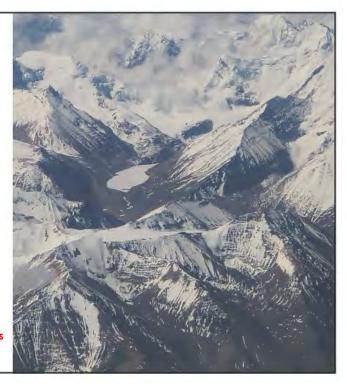
Source: MoFE, 2019

1988 1995 2002 2009 2016 2023 2030 2037 2044 2051 2058 2065

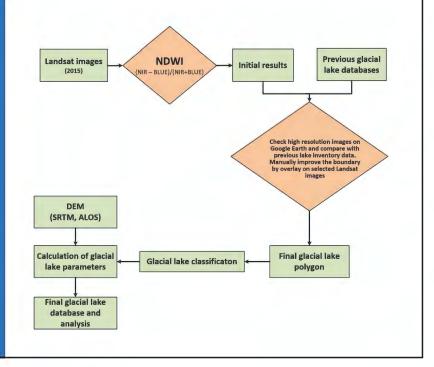
10

• Glacial melt water dammed by - Ice, moraine (debris), bedrock, landslide or alluvial fan

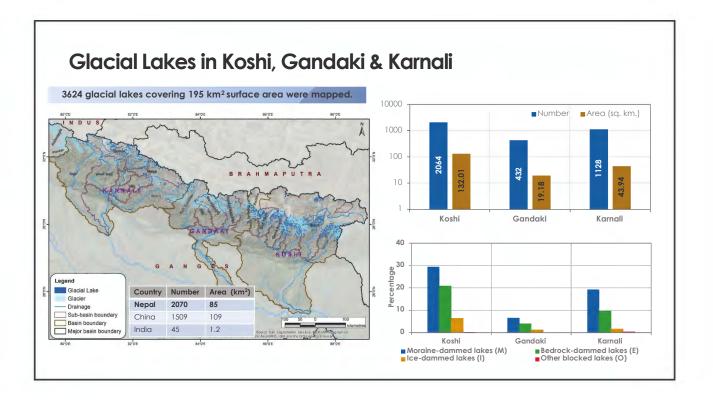
Karnali basin between 2000 and 2015.

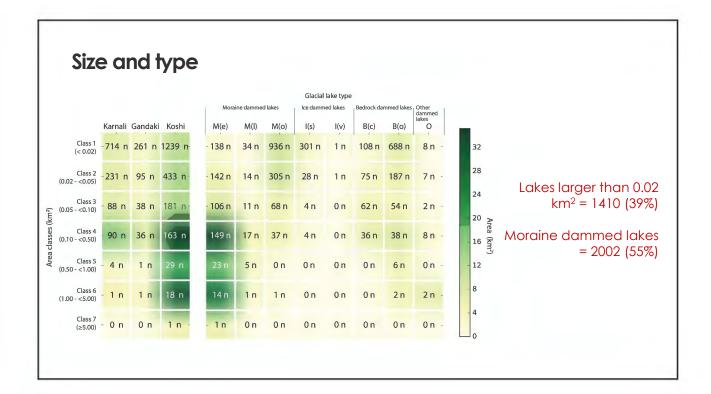

- Area ≥0.003 km² (at least 3-4 pixels in 30 m resolution satellite image)
- Elevation above 3000 masl.

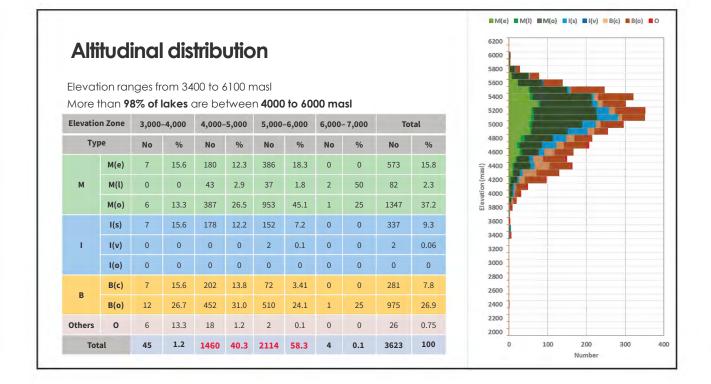
Limitations


- ✓ Rugged terrain
- ✓ High elevation
- ✓Remote area
- ✓ Expensive field survey
- ✓Time consuming
- ✓Man power

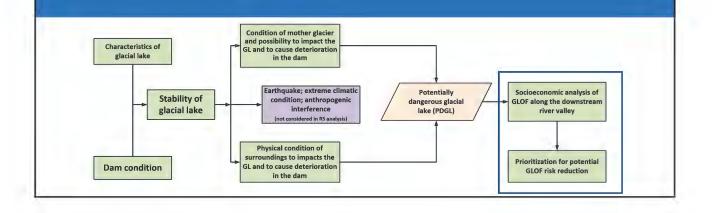
Remote sensing is the best tool to map the glacial lakes




- Semi-automatic
- 97% accuracy
- Lake Id
- Latitude / Longitude
- Lake area
- Elevation
- Lake type
- Landsat 8 (2015±1)
- High resolution images in Google earth.
- 5m DEM for Nepal part
- 12.5 m DEM outside Nepal



S.N. 1	Glacial la	ike type	Description					
		End Moraine Dammed Lake - M(e)	The lake's water usually touches the walls of the sid moraines, but the water is held back by the en- moraine (dam), but not necessarily, in contact with the glacier, and may have glacier ice at the lake bottom.					
2	Moraine Dammed Lake (M)	Dammed Lateral Moraine		Lake formed in the tributary valley, trunk valley, c between the lateral moraine and the valley wall, or a the junction of two moraines. Lake is held back by the outside wall of a lateral moraine				
3		Other Moraine Dammed Lake - M(o)	Lake dammed by other moraines (includes kettle lake and thermokarst lakes).					
4	Ice	Supra Glacial Lake - I(s)	Body of water (ponds or lakes) on the surface of glacier					
5	Dammed Lake (I)	Dammed by tributary-valley glacier - I(v)	Lake dammed by glacier ice with no lateral moraine Can be at the side of a glacier between the glacier margin and valley wall					
6	Bedrock	Cirque Lake - B(c)	A small pond occupying a cirque					
7	Lake (B)	Other Glacier Erosion Lake - B(o)	Body of water occupying depressions formed by glacial erosion. These are usually located on the mis slope of hills, but not necessarily in a cirque					
8	Other dam	med Lakes (O)	Lakes formed in a glaciated valley and fed by glac melt, but the damming material is not directly part the glacial process, for example, debris flow, alluvial landslide-blocked lakes					



Identification of Potential Dangerous Glacial Lakes

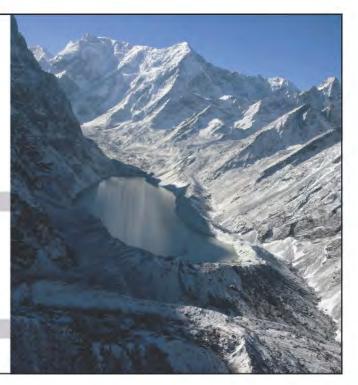
Level 1: Lake characteristics Level 2: Dam characteristics Level 3: Characteristics of source glaciers Level 4 : Physical condition of surroundings

 ake characteristics Lake size and rate of expansion; Increase in the water level/volume of water; Presence of cascading lakes; and Intermittent activity of supraglacial lakes 	Source glacier • Condition of associated glacier (source glacier); • Distance between the lake and glacier(s); • Steepness of glacier tongue; • Debris cover on the lower glacier tongue; • Presence of crevasses and ponds on the glacier; • Calving of ice from the glacier's snout; and • Icebergs breaking off at the glacier terminus
Dam characteristics • Type of damming material; • Crest width; • Slope of the dam wall; • Height and length of the dam; • Landslides on the dam; • Presence or absence of drainage outflow; • GLOF in the past; • Seepage through the dam's walls; and • Existence of ice core and/or permafrost	 Surrounding physical conditions Hanging glaciers in contact or close to the lake; Potential rockfall/slide around the lake; Large snow avalanche close to the lake; and The sudden advance of a glacier towards a lower tributary or the main glacier which has a well-developed frontal lake.

Analysis for PDGL

Total lakes (lakes larger than 0.003 km²) - 3624 lakes

Level 1: Lake characteristics


Total lakes – Class 1 (<0.02 km²) – type $\{(I(s+v) - B(c+o) - O)\}$ 3624 - 2214 - 37 – 460 -19 = **895**

A total of 2729 lakes removed from Level 0

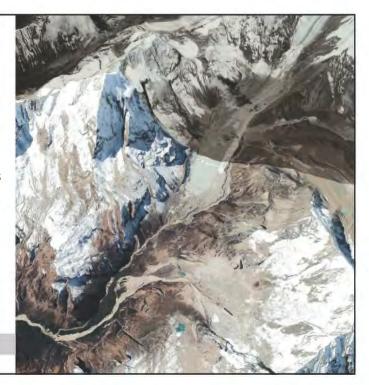
Level 2: Dam characteristics

Level 1 – no crest(nc) – compressed and old dam material(co) – dam length > 500m (dl) – dam outer slope < 20 degree = **295**

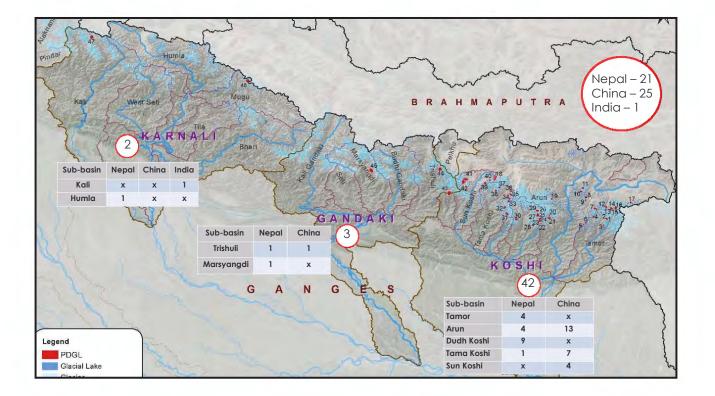
A total of 600 lakes removed from Level 1

Analysis for PDGL

Level 2 analysis - 295


Level 3: Source glacier

- more than 200m away (dm),
- glaciers slopes less than 20 degrees (sm)


Level 4: Physical Condition of Surroundings

- Probability of snow/ice avalanches
- Potential landslides

A total of 47 lakes is selected as PDGLs

Country	Basin	Lake inventory	Lake character.	Dam character.	Source gr. and surroundings	PDGL	
		level 0	Level 1	Level 2	Level 3	2 1 21	
Nepal	Koshi	834	199	91	19	18	
	Gandaki	255	65	18	2	2	
	Karnali	981	241	39	1	1	
	Sub-total	2,070	505	148	22	21	
China	Koshi	1,230	308	123	28	24	
	Gandaki	177	52	17	1	1	
	Karnali	102	22	3	0	0	
	Sub-total	1,509	382	143	29	25	
India	Koshi	0	0	0	0	0	
	Gandaki	0	0	0	0	0	
	Karnali	45	8	4	1	1	
	Sub-total	45	8	4	1	1	
	Total	3,624	-2729 895	-601 295	-243 52	-5 47	

Ranking of PDGLs

- Rank I Possibility of expansion due to the calving of glaciers, close to the loose moraine end; no overflow through the moraine dam; steep outlet slope; hanging source glacier; chances of snow and/or ice avalanches and landslides in the surroundings impacting the lake and dam.
- **Rank II** Confined lake-outlet; compact old end-moraine; hanging lake; distinct seepage at the bottom of end-moraine dam; gentle moraine slope.
- Rank III Confined lake-outlet; gentle outward dam slope; large lake but shallow depth; moraine dam more than 200m; old and compact moraine.

Country	Rank I	Rank II	Rank III	Total	Basin	Rank I	Rank II	Rank III	Total
Nepal	15	3	3	21	Koshi	28	10	4	42
TAR, China	15	9	1	25	Gandaki	2	1	х	3
India	1	х	х	1	Karnali	1	1	х	2
Total	31	12	4	47	Total	31	12	4	47

Conclusion and Way Forward

- **3624 (2,070 in Nepal)** glacial lakes with the size ranging from 0.003 to 5 km²
- Lakes larger than 0.02 km² are 1,410, large enough to damage the settlements and infrastructure
- 47 lakes are identified as potentially dangerous based on stability of lake and dam, source glacier and surroundings
- 21 PDGLs are in Nepal, 25 are in China and 1 in India
- Koshi basin 42 PDGLs and 18 PDGLs in Nepal
- Number of Rank I PDGL is also high (28 with 15 in Nepal) in Koshi basin

- Formation of new lakes, expansion of existing lakes and disappearing of lakes are common processes -Repeat inventory of glacial lakes is required
- Remote Sensing is the best and quick tool High Resolution imageries and Digital Elevation Model
- Mechanism for regular monitoring of glacial lakes and GLOF prone areas for effective GLOF hazard management.
- Detail field study of high risk (Rank 1) PGDLs is required.
- Require establishment of vulnerability of human assets (life and property) in the downstream area.
- Need to reduce GLOF risk for sustainable mountain development
- Installation of real time sensor network and early warning system coupled with GLOF simulation models, to reduce the intensity of disaster associated with the GLOFs
- Create awareness to the peoples living downstream of PDGLs

