

Economics of CC Adaptation – case of Khulna city water sector projects

A.K. Enamul Haque PhD Professor of Economics United International University Dhaka, Bangladesh

South Asian Network for Development and Environmental Economics

Kathmandu, Nepal

Understanding CC impact pathways

- GHG emission → Global warming → Temperature change → changes in the climate
- Events
- rapid climate events
 - Cyclone, major flood, flash flood, GLOF
- Slow onset events
 - Salinity, SLR, flood, storm surges, seasonal change, seasonal temperature fluctuations, etc.

ECONOMICS & THE ENVIRONMENT

Impact pathways

- Events \rightarrow impacts
 - Exposure
 - Intensity
 - Vulnerability
- Introduces Risks
- Development Projects should be planned to be robust enough to withstand these risks
 - Need adaptation

Strategies to deal with CC

- Mitigation to reduce emission of GHGs
- Adaptation to build capacity to deal with climate events
 - Developing resilience among
 - People
 - Nature

Analysis of Adaptations

- Public expenditures at risk due to climate change related events
 - How to select the best set of adaptation strategies?
 - How to separate cost of adaptation from other project costs?
 - How to claim 'additional costs' from climate funds/climate resilient fund/climate adaptation funds/climate trust fund?

The Issue of Water sector

- Khulna is a south-western metropolitan city with a population of about a million
- It is a major city of the country
- Salinity in water is rising
- Water-logging is increasing
- City is planning to upgrade its water infrastructure – Water supply and Drainage system
- This study is designed to understand the CC impact on this plan.

Khulna City

ECONOMICS & THE ENVIRONMENT

31 Wards 1,000,000 Population (approx.)

Rivers East – Rupsha and Bhairab West – Mayur

Drainage through Mayur

Land elevation 2.5m from the mean sea level

Climate Induced Threats -Water logging -Salinity Intrusion -Cyclone/Storms

Study team

Study Method

Climate Scenarios

Scenario	A2	B1				
Temperature	The average monthly temperature rise by 2050 varies from +0.5°C in October to +1.7°C in January and February.	The average monthly temperature rise by 2050 varies from +0.5°C in June, July, and August to +1.5°C in February and April.				
Rainfall	The annual rainfall increases by about 5.0% by 2050 (1,860 mm per year) from the reference period. ^a	The annual rainfall increases by about 9.3% by 2050 (1,739 mm per year) from the reference period. ^b				
Seasonal rainfall	Increase in July–September by 4.6% and a decrease in December–February by 26.3%	Increase in July–September by 10.5% and a decrease in December–February by 46.2%. ^c				
Rainfall intensity	50 mm or more rainfall in 6 hours increases from 4.20 times per year to 5.90 times per year in 2050.	50 mm or more rainfall in 6 hours marginally increases from 4.20 times per year to 4.25 times per year in 2050.				

Changes in socio-economic variables

ECONOMICS & THE ENVIRONMENT

Domestic, Trend - no CC

Total, Trend - no CC

2050

2050

Industry

2060

2040

2030

Agriculture

2030

Changes in land use-2030 and 2050

Damage function

Commercial & Others

Agriculture

Adaptation options

Construction of new roads						
Construction of culvert/bridge						
Construction of new surface drains						
Redesign of building						
Raise the plinth of land/earth filling						
Sluice gates improvement and clean up the siltation from outlets						
Re-excavation of drain with lining						
Re-excavation of Moyur river						
Re-excavation of canals/drainage channel						
Widen the canals						
Widen the drains						
Repair of prevailing dam/embankment/bridge						
Temporary embankment construction						
Repair of culvert						
Resettlement of affected people						
Preserve rain water						
Keeping valuables away						
Migrate during disaster						
Proper solid waste management						
Arrange campaign/education program to create awareness among people						
Inform to people before disaster						

2050 water logging

Impact of Adaptation

KCC Area	Average water logging depth (cm)	% Household income lost	% of capital loss in Industry	% of capital loss in Manufacturing	% of capital loss in Commercial & social institutions	% of yield loss in Agriculture	% of Roads damaged	% Population affected	
Base Case before project	41	195	5	6	6	19	12	24	
drainage system (IDS) 2050 Base Case with	33	159	4.1	4.7	5.2	15.2	9.3	6	
Socio-Economic (SE) changes and IDS. (No Climate change)	33	159	4.1	4.7	5.2	15.2	9.3	6	
changes and with climate change (CC) 2050 Case with SE	63	236	7.8	8.8	9.8	28.7	17.6	58	
changes, with CC and with IDS 2050 Case with SE	47	217	6	7	7	22	13	30	
changes, with CC with IDS and with Adaptation	40	101	5	6	6	10	11	12	
Sualegies	40	191	3	0	0	19	11	13	

ECONOMICS & THE ENVIRONMENT

Damage costs

1 in 10 year Water	ogging depth cm)	Iousehold	ndustry	Aanufacturing	Commercial & Others	\griculture	toads	Total
Logging Event	20	-	-	r.	~~~	٩,	<u> </u>	(mTk)
Base Case Base Case <mark>with</mark>	41	5	33	14	564	3	535	1,155
improved drainage system (IDS)	33	1	6	3	109	1	165	285
2050 Base Case with Socio-Economic (SE) changes and IDS								
(No Climate change) 2050 Case with SE changes and with	33	5	761	1,699	3,299	1	258	6,023
climate change (CC) 2050 Case with SE	63	48	13,745	30,665	59,548	21	4,651	108,679
with IDS 2050 Case with SE changes, with CC with	47	25	4,964	11,075	21,507	7	1,680	39,259
IDS and with Adaptation Strategies	40	10	2,157	4,813	9,345	3	730	17,059

Benefit cost ratio

	Pessimistic scenario	Realistic scenario	Optimistic scenario
Benefit-Cost Ratio	15	5	n/a
Parameter			
Discount Rate	10	10	10
GDP Growth Rate	6.2	6.2	6.2
Population Growth Rate	0.04	0.02	0.015
KCC Factor	0.33	0.33	0.33
% Manufacturing in 2010 hotspot areas	2	0.3	0.1
% Industry in 2010 hotspot areas	2	1.1	0.5
% Commercial in 2010 hotspot areas	20	17.3	14
Fraction of Commercial in 2010 mixed area in hotspot areas	0.7	0.6	0.4

Learning

ECONOMICS & THE ENVIRONMENT

• CC adaptation study

- Requires multi-disciplinary team
- Needs to understand climate events, climate risks
- Use future climate scenarios
- Needs to develop socio-economic scenarios for the future
- Identify additional costs in project
- Justify which adaptation measures make sense.
- Access international finance mechanism to pay for climate related adaptation costs.