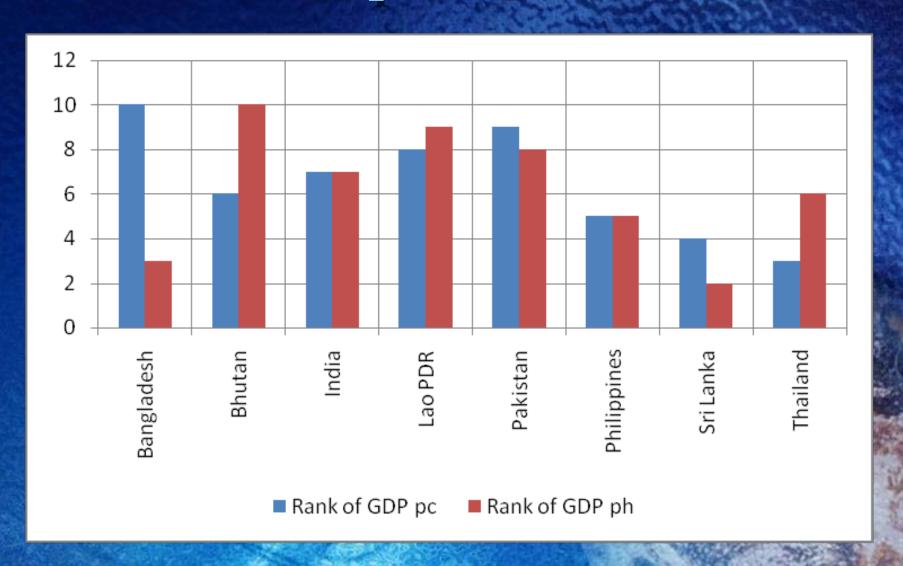
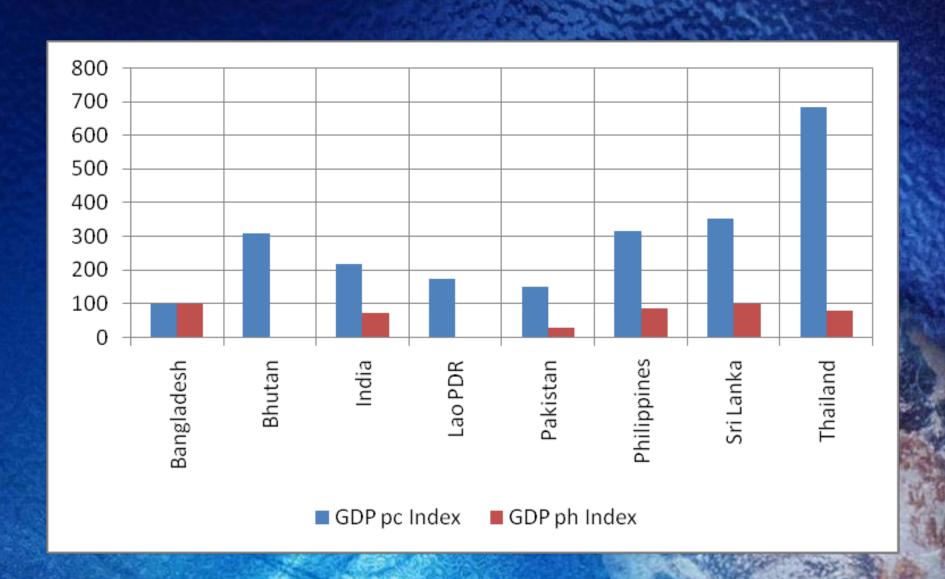


A.K. Enamul Haque Professor, United International University, Dhaka, Bangladesh

Introduction


- Economic Development is accompanied with
 - More energy use
 - Higher emission level
 - Pressure on natural resources
 - Depletion of resources
 - Degradation of resources: air, water and soil
 - More urbanization
 - Higher temperature urban heat island syndrome
 - So on....

Greening economic development means


- Reducing pressure on nature and yet continue to grow
 - Cleaner air
 - Cleaner water
 - Better soil

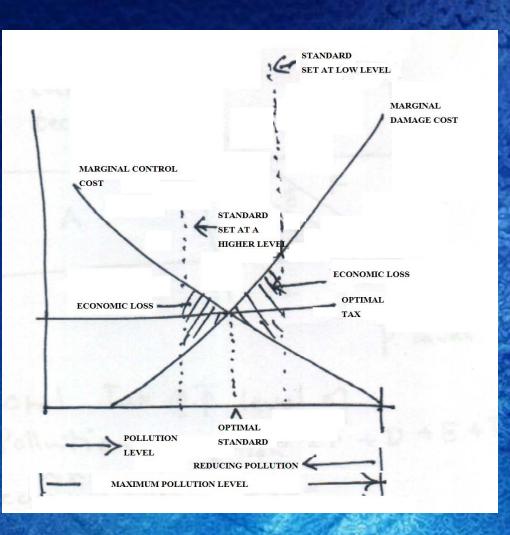
- Sustainable resource use
- Cleaner urban environment
- Sustainable agriculture
- Cleaner manufacturing sector

Relative position in GDP per capita and per hectare

Pressure on Resources

How to make development 'green'?

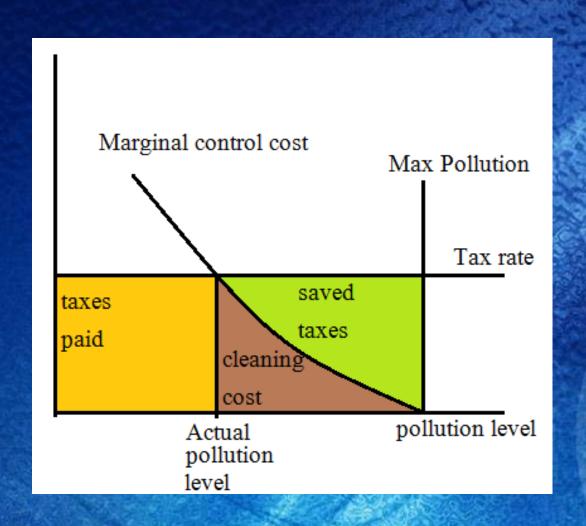
- Two distinct choices
 - Command-and-control
 - Regulation to control pollution requiring strict monitoring mechanism and an honest civil bureaucracy
 - Setting up of standards
 - Market based incentives
 - Requiring legal set up for imposition of fines, charges
 - Trading of ecological services
 - Trading of pollution rights
 - Reversing incentive to promote clean technology

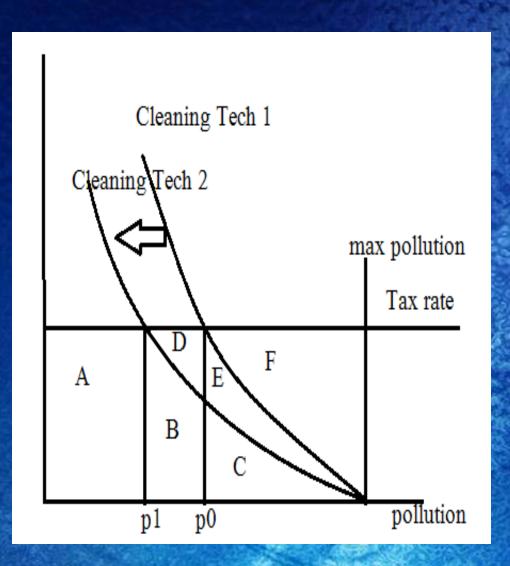

Policy Instruments can be also classified as

- Using Markets
 - Subsidy, taxes, charges, deposit-refund
- Creating Markets
 - Property rights, tradable permits, international offsets (CDM)
- Environmental Regulation
 - Standards, bans, permits, quotas, zoning, liabilities
- Engaging Public
 - Public participation, disclosure rules

Economic instruments

- Taxing the polluters instead of ban or 'demolition'
 - Under this polluters could be taxed based on estimates of
 - annual pollution load
 - annual production units
 - It requires no 'standards'
 - It also incentivize adoption of cleaner technologies in the process of production


Standards


Problems in standard

- Driven by technology
- Regulator fully informed on the technological innovation
- Economic cost of 'wrong standard'

Introducing Tax – creating incentives

Moving towards cleaner technology

Maximum Pollution remains same but industries clean up with taxes

Cleanup Technology 1

$$Tax = A + B + C + D + E + F$$

$$Cleanup cost = C + E$$

$$Pollution level = p0 Tax paid = A + B + D$$

$$Tax saved = F$$

Cleanup Technology 2

Cleanup cost =
$$B + C$$
, Pollution level = $p1$
Tax paid = A , Tax saved = $D + E + F$

GO FOR TECHNOLOGY 2

Tradable Permits: ERC

- Emission reduction credits
 - To give flexibility to firms to use cost-effective technology of emission reduction
 - Allow industries to build new plants without increasing emissions
- Offset policy
 - Buy old plants
- Bubble policy
 - Allowing exchange of emission between two locations

Tradable Permits: ERC

Netting

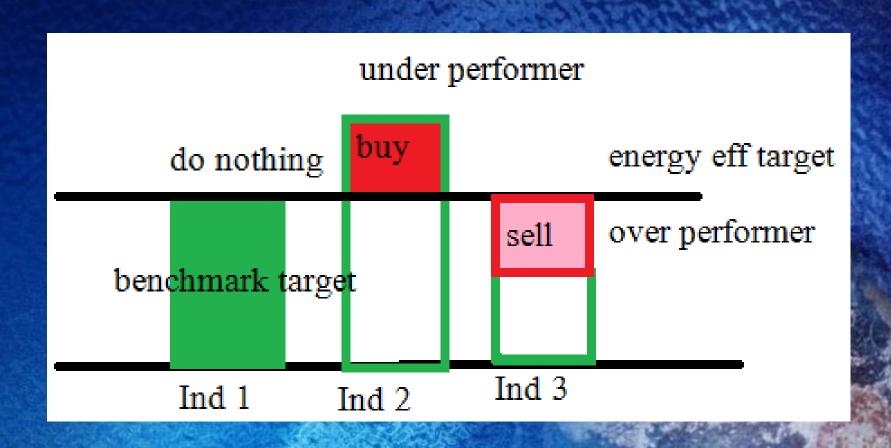
 Allow firms to expand or modify plants as long as net increase in emission is below the threshold level

Banking

 Allowing firms to store 'saved' credit for later use in bubbles, netting, or offsets.

Tradable permits: Ambient Permit Trading

- Used to control emission in a geographical area
- Used when differential costs exist between polluters
- Best used in case of zero transaction costs
- Need institutional structure exchange mechanism to reduce transaction costs


Output-based allocation of pollution

- Tying permit allocation to its output using best industry standard.
- Use benchmarking to set pollution permit
- Often favors newer firms
- With fixed permits, it incentivize firms to increase output only with better abatement method.
- Does not work if want to reduce output

Cap-and-Trade Program

- A mixed system
 - First allocate a CAP on emission level by firm
 - Second allow them to trade freely
- Benefits existing firms by creating value to their pollution
- India's PAT program perform achieve
 - trade

PAT and incentives

Resource based permits

- Transferable grazing rights
- Fishing permits
- Water rights to riparian communities
- Transferable development rights
 - Allowing an area to be converted into parks in exchange for industrial development in other areas

Countries using some of these instruments – some examples

- US sulfur, NOx,
- Chile air pollution (PM10 emission at the industrial units).
- Europe Carbon trading
- Clean Development Mechanism
- Voluntary Carbon Market
- GEF transfer fund for market creation

Taxing polluting output or input

- Carbon Tax
- Product tax for using harmful chemicals or gases
 - Organic vs other crops
 - Normal lights vs CFL lights
 - Water-saving gadgets vs normal water gadgets
 - Energy saving motors vs other motors

Other taxes or fees

- Royalties for mining, user fee, stumpage fee, land tax
- Taxes on use of plastic
- Deposit-refund system
 - Promotes recycle, reuse of resources

Rights and Liability rules

- Creating property rights on common property resource to control access or to convert open access resources into a common property resources
 - Community Forests (Nepal), JFM (India)
 - REDD, REDD+
- Forest Stewardship Certificates
 - 4.9 million ha of forest under this program in Asia
 - China, Indonesia (Teak), Nepal (hand made paper, 24 NTFPs)

Rights and Liabilities

- Using tort rules for compensation, fines.
- Using PIL for reducing pollutions or degradation
 - Landfill for housing (Bangladesh)
- Reducing transaction costs for liability suites
 - Specialized courts

Payment for Ecosystem Services

- Polluter pay principle
- Beneficiaries pay principle
- Users pay principles
- Compensation to the protectors
- Property rights reallocation
- Compensation rule
 - Damage costs
 - Rehabilitation costs
 - Value of ecosystem services
 - Gain of the beneficiaries
- Government Pays or Market Pays

PES in China

- Watershed protection
- Water use rights
- Forest compensation fund of the government
- Nature forest protection fund
- Eco-agriculture program

Issues for efficient instrument choice

- Heterogeneity in abatement costs
- Heterogeneity in damage costs
- Technological progress
- Growth and inflation
- Non-convexity in nature protecting irreversible damages