Webinar: Report Launch on
“Inventory of Glacial Lakes and Identifications of Potentially Dangerous Glacial Lakes in Nepal, the TAR, China, and India”

07 September 2020

Joint Initiative of UNDP and ICIMOD on Updating Glacial Lakes in the context of changing climate

Deepak KC
Senior Programme Officer, UNDP Nepal
deeap.kc@undp.org
Outlines

• Nepal’s Vulnerability in the face of Climate Change
• Temperature rise and Glacier Melting
• Glacial Lake Outbursts Floods in Nepal
• Nepal’s Priority for Climate Risk Management
• Preparing Nepal’s Second GLOF Project for GCF Submission
• Rationale and Scope of the Study
• Conclusion
A changing climate results in unprecedented extremes with high frequency, intensity, spatial extent (IPCC/SREX, 2012);

Nepal loses 333 lives and property worth over USD 17.24 million (NPR 2,099 million) each year to extreme climate events, Nepal Disaster Report, MoHA 2019);

One of the biggest climate risk in high mountain area is from accelerated glacier retreat and expansion of glacial lakes which potentially results into GLOFs.
Temperature rise and Glacier Melting

- Nepal’s Average temperature increment is 0.056°C/yr and a higher warming rate of 0.086°C/yr in the Higher Himalaya over the period of 1971–2014 (DHM 2017);

- Warming in HKH region will likely be at least 0.3°C higher even if the global warming is kept to 1.5°C by the end of 21st century and even more pronounced in mountain ranges (Wester et. al. 2019);

- The Mass budget of Himalayan glaciers has decreased over the last five decades (AR5-(IPCC) and it projects a continuous loss of glacier mass through the 21st century (Jimenez Cisneros et al. 2014);
Temperature rise and Glacier Melting

- **Glacier** areas in **Nepal decreased by 24%** in the 33 years between 1977 and 2010 (Bajracharya et al. 2014a, 2014b);

- **Imja glacier** showed the highest rate of retreat among Nepal's glaciers, of **74 m/yr over 2001–2006** (Bajracharya et al. 2007);

- **Trakarding glacier** retreated at **66 m/yr** between 1957–2000 (Chapagain et al. 2010) and an average shrink of **40 meters** between 1964–2018 (Krause et al., 2019);

- Global glacier lake **volume** increased by around **48%**, and increment of **lake numbers** by **53%** and **total area** by **51%** between 1990 and 2018 (Nature Climate Change 2020).
Glacial Lake Outbursts Flood in Nepal

- Altogether **26 GLOF events** impacted Nepal (15 in Nepal (Recent: April 2017), 11 GLOFs originated from Tibet Region (Recent: July 2016)

- **Dig Tsho GLOF, 1985** caused casualties and resulted in an estimated economic loss of **US$ 1.5 million** (Horstmann 2004; Mool et al. 2001a);

- In 1977, a GLOF was recorded in Dudh Koshi, causing 2–3 casualties (Agrawala et al. 2003);

- The **Zhangzangbo–cho GLOF** in the TAR, China, July 1981, causes a loss of US$ 3 million (Mool et al. 2001);

- The total **Value at risk** under the modelled GLOF scenario of Thulagi is USD 406.73 million (Khanal et al. 2015).
Nepal’s Priority of Climate Risk Management

Climate Risks Management: GL Risk Reductions to save lives and livelihoods

• Nepal’s Constitution

• **NAPA (2010), NDC/e-NDC (ongoing)** – (Parties to the UNFCCC /Paris Agreement), **NAP (ongoing)**

• **NPC’s Periodic Plans** - Agenda 2030 for Sustainable Development (Prosperity, People and Planet - 11 Goals - more specific goal no 13 on CC.)
Preparation for Nepal’s Second GLOF project for GCF Submission

- UNDP’s core mandate of Sustainable Development and Resilience Building
- Part of UN Sustainable Development Framework;
- UNDP’s CPD Priority
- Comparative Advantages: Past experiences (Imja and Tsho Rolpa Glacial Lakes);
- Sustained Partnership with Govt. on Policy and institutional support; (guided by country programme).
“Protecting Livelihoods and Assets at Risk from Climate Change Induced Flooding in Glaciated River Basins of Nepal”

• Safeguarding the lives and livelihoods of **327,500 people** and their physical and economic assets, from the climate-induced threat of GLOFs and related hazards;

Project Outcomes and Outputs:

Increased Resilience and enhanced livelihoods of the most climate vulnerable people through climate resilient interventions

Output 1 - Institutions strengthened to deliver climate risk information, monitoring and early warning services to local populations and productive sectors of economy

Output 2 - Investment in GLOF and Flood risk reduction strategies at the watershed level scaled-up

Project partners: Lead: Department of Hydrology Meteorology (DHM) / MoEWRI

Thematic Leads: MoFE’s DFSC and DNPWC

Collaborating Partners: Other relevant ministries and departments, Academia and Research Institutions
- Monitoring Station
- GLOF Risk Reductions
- Monitoring Station/Early Warning System
- Community Based Climate Risk Management Interventions
Rationale of the Study

During the project formulation, following gaps were identified:

• Need a study/research to update the previous studies of 2011 for current status of Glaciers, GL and glaciated basins;

• Need to generate research-based evidence to understand Glacier, GL and GLOF Risk and its reduction to save lives and livelihoods;

• Need to update Mapping and Hazard assessment of Glaciers and Glacial Lakes periodically due to dynamic nature;

• Need an updated database, detailed assessment/analysis on Snow, Glacier, Glacial Lakes and GLOG Risk to make the proposal stronger;

This study was carried out under GCF Readiness Programme for Nepal— with the support of BMUB/Germany.
UNDP partnered with ICIMOD as a trusted, knowledge and research-based institution on climate change to fulfill these gaps to support GCF project formulation:

• Carry out an **analytic assessment of Glacial Lakes** of Nepal and TAR, China to understand **high mountain climate risks** particularly arising from critical glacial lakes of Nepal;

• Prepare a **new inventory of glacial lakes** of Nepal, **re-categorize and identify potentially critical glacial lakes** in Nepal, TAR, China (potentially affecting Nepal) with their ranking;

• Provide necessary data of all critical glacial lakes to run the **dam breach model** (5 m DEM based data) to prepare the GLOF **hazard and risk maps**.
Conclusion

• Study Report contributes significantly to fill the knowledge gaps with:
 • Updated database on GL numbers (other various parameters), identifications of critical lakes;
 • Build Climate rationale and define theory of change;
• A good resource for wider stakeholders;
• Nepal will submit the Full Funding Proposal on GLOF RR to GCF in Mid 2021.
Thank You for your Attention!!!

Photos – Deepak KC except that of Slide 4 and 6 (Bhotekoshi damage), facts/figures - Sources acknowledged.