HYDROSAR – WEATHER-RELATED HAZARD INFORMATION FROM SAR

Contributors:

F.J Meyer¹⁾, A. Molthan²⁾, L. Schultz²⁾, J. Bell²⁾, B. Osmanoglu³⁾, M.J. Jo³⁾, D.B. McAlpin¹⁾, T. Meyer¹⁾, B. Kubby¹⁾, A. Lewandowski¹⁾, B. Chapmann⁴⁾, M. Matin⁵⁾, R. Thapa⁵⁾, B. Bajracharya⁵⁾, K. Tsering⁵⁾

¹⁾Geophysical Institute, University of Alaska Fairbanks, Fairbanks; ²⁾NASA Marshall Space Flight Center, Huntsville, AL; ³⁾Goddard Space Flight Center, Greenbelt, MD; ⁴⁾Jet Propulsion Laboratory, Pasadena, CA; ⁵⁾ICIMOD, Kathmandu, Nepal

Lecture 5: Flood Depth Cal/Val results

- Water depth: The depth of water above highest adjacent terrain.
 - The *'Flood_Depth_Estimation_with_Flood_Extent_Maps'* program estimates water depth.
- Water level: The elevation of surface water including terrain height.
 - We need to check if the gauge data is water level or water depth for validation.
- Datum difference between measurements and validation data needs to be considered.

What kind of DEM we should use for flood depth mapping?

- Importance of the use of appropriate DEM
 - Estimated flood depth can be different depending on the DEM we use.
 - Accuracy of DEM is one of the critical factors for flood depth mapping.
 - Digital Terrain Model (DTM) needs to be used.
 - DSM from stereo images can be inadequate to generate a water depth map.

ICIMO

- Different DEM sources
 - NASADEM (reprocessed SRTM) Global 1 arc second (30m) DEM
 - Copernicus DEM 30m TanDEM-X global DEM provided by ESA.
 - Local DEMs (e.g. LIDAR)

DSM

Batu Osmanoglu, MinJeong Jo

HydroSAR Training, 01/2021 - 3

DEM Accuracy

What kind of DEM we should use for flood depth mapping?

ASF

SERVIR

NASA

- Spatial Resolution
- Resolution is not accuracy
- Imaging artifacts

DEM	Vertical Accuracy (m)
SRTM 1 arcsec	9
ASTER GDEM	17
AW3D30	5
TanDEM-X	<10

Grohmann, C. H. (2018). Remote Sensing of Environment.

DEM Accuracy

What kind of DEM we should use for flood depth mapping?

HAND CALCULATION AND ISSUES

- Height Above Nearest Drainage (HAND) DEM
 - The HAND model normalizes the topography in respect to the drainage network.
 - The vertical distance between a location and its nearest stream.
- To produce HAND, a hydrologically conditioned DEM and a representation of the DEM flow field are required.

ICIMOD

NASA

SERVIR

PL

How is HAND calculated?

HAND Model procedure

—

paths.

• During HAND calculation, a threshold is applied to the accumulation area. Small accumulation area threshold results in high density drainage networks.

Contributing area (left) and drainage networks plotted on SRTM image, with varying contributing area thresholds (in number of grid points).

Original DEM and HAND Grid Profiles

HydroSAR Training, 01/2021 - 10

PACE FLIGHT CENTER

NASA

SERVIR

ALASK

Issues with HAND results

• Bridges

Issues with HAND results

- NaN issues for HAND
 - Anomalies found in some rivers; the river looks disconnected in the HAND DEM.
 - This issue is mainly due to the accumulation threshold parameter.

SRTM DEM

HAND v0.1.6

GEE HAND

• Undefined areas within HAND

- Some rivers are being NaN because the edge of the river has high elevation values resulting in the water not draining into the river.

ICIMOD

JPL

SERVIR

NASA

- Different ways to obtain HAND DEM
 - Calculating HAND directly from Digital Elevation Model using the Big Hand notebook.
 - Getting HAND dem from the web site of Google Earth Engine.
 (<u>https://code.earthengine.google.com/1bbbff7c908ad6482ccdc627191d4003</u>)
 - Getting Google HAND through the notebook (An account is required for Google Earth Engine)

Bing Hand notebook

HAND DEM Differences over Study Area

FLOOD DEPTH ESTIMATION

ŀ

Numpy:
$$\mu = \frac{1}{N} \sum_{i}^{N} Z_{i}$$
$$\sigma^{2} = \frac{1}{N} \sum_{i}^{N} |Z_{i} - \mu|^{2}$$
 $W.H. = \mu + C\sigma, \ 0 < C \leq 3$ NMAD:
$$\mu = \frac{1}{N} \sum_{i}^{N} Z_{i}$$
$$\sigma = median \left(\left| |Z_{i} - \vec{Z}| \right| \right), \quad \vec{Z} = median(\vec{Z}) \quad W.H. = \mu + C\sigma, \ 0 < C \leq 3$$
LogStat:
$$\mu = \exp\left[\frac{1}{N} \sum_{i}^{N} \log(Z_{i})\right]$$
$$\sigma^{2} = \exp\left[\frac{1}{N} \sum_{i}^{N} \log(|Z_{i} - \mu|^{2})\right]$$
 $W.H. = \mu + C\sigma, \ 0 < C \leq 3$ terative: $W.H. = \exp\left[\frac{1}{N} \sum_{i}^{N} \log(Z_{i})\right]$
$$\sigma^{2} = \exp\left[\frac{1}{N} \sum_{i}^{N} \log(|Z_{i} - \mu|^{2})\right]$$
 $W.H. = \mu + C\sigma, \ 0 < C \leq 3$ terative: $W.H. = \frac{1}{N} \sum_{i}^{N} \log(Z_{i})$
$$\sigma^{2} = \exp\left[\frac{1}{N} \sum_{i}^{N} \log(|Z_{i} - \mu|^{2})\right]$$
 $W.H. = \frac{1}{N} \sum_{i}^{N} \log(Z_{i})$ terative: $W.H. = \frac{1}{N} \sum_{i}^{N} \log(Z_{i})$
$$\sigma^{2} = \exp\left[\frac{1}{N} \sum_{i}^{N} \log(|Z_{i} - \mu|^{2})\right]$$
 $W.H. = \frac{1}{N} \sum_{i}^{N} \sum_{i}^{N} \frac{1}{N} \sum_{i}^{N} \sum_{i}^{N}$

• Depending on the height distribution different estimators provide different statistical estimates.

SAR determined flood depth to water level conversion

Water Level Data (IGARSS Domain)

• Copernicus Global Land Service - Water Level V2 Rivers

* No SAR observation matching this station.

SF

SERVIR

ALASKA

NASA

V.S. ID	Date Time	Obs
5489	5489 2020/06/27 23:26 30.5	
	2020/07/27 17:22	33.76±0.02
5503*	2020/08/09 15:54	31.43±0.15
5512*	2020/08/12 04:26	30.27±0.11
5470	2020/07/06 04:25	25.31±0.84
	2020/08/02 04:25	27.98±0.11
5518	2020/06/03 15:52	23.25±0.11
	2020/07/27 15:52	27.51±0.14
5499	2020/07/06 04:25	24.84±0.14
	2020/08/02 04:25	26.3±0.09
5471	2020/06/03 15:52	22.96±0.09
	2020/07/27 15:52	25.97±0.17
5572	2020/06/27 04:19	11.18±1.00
	2020/07/24 04:19	13.82±0.08

ICIMOD JPL

NASACoddar

SPACE FLIGHT CENTER

• On a machine with 128GB RAM, 32 core Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz

Water Objects	Numpy	NMAD	LogStat	Iterative
47К	00:00:07	00:00:10	00:00:09	00:40:07
197K	00:00:18	00:00:27	00:00:19	01:40:24

- Sigma's are set the same for all runs, but actually changing them could yield better results. For example, setting Numpy with 3 sigma for NASADEM would reduce the RMSE.
- SRTM HAND is calculated with Big Hand notebook v0.1.4, while others were calculated with v0.1.8.

RMSE (#)	Numpy (1σ)	NMAD (3σ)	LogStat (1σ)	Iterative
SRTM (v0.1.4)	<i>3.28</i> (2)	4.7 (2)	13.66 (2)	0.84 (2)
NASADEM	3.54 (2)	4.11 (2)	1.73 (2)	1.12 (2)
Copernicus	<i>2.89</i> (2)	4.05 (2)	79.01 (2)	2.27 (2)
GEE-Hand	1.65 (2)	0.89 (2)	5.68 (2)	0.79 (2)

NASA

Shows RMSE (m) and (number of validation points)

ICIMOD

Bold: lowest RMSE

Italics: 2nd lowest RMSE

VALIDATION FOR BANGLADESH 2017 CASE

Water level data in Bangladesh

• Flood Forecasting & Warning Centre from Bangladesh Water Development Board (BWDB) is monitoring daily basis water level (<u>http://www.ffwc.gov.bd/index.php#</u>).

TABLE OF WATER LEVELS : 11-11-2020

		WL - Observe (m)		WL - Forecast (m)		
River Name	Location	Danger Level (mPWD)	10-11	11-11		
			06:00 AM	06:00 AM		
Brahmaputra Basin						
Jamuna	Aricha	9.40	5.59	5.44	1	
Atrai	Atrai	13.70	11.12	10.97	1	
Jamuneswari	Badarganj	32.15	NP	NP	1	
Karatoa-Atrai-GGH	Baghabari	10.40	6.16	6.11	1	
Jamuna	Bahadurabad	19.50	15.25	15.34	1	
Upper Atrai	Bhusirbandar	39.60	35.88	35.87	1	
Karatoa	Bogra	16.30	12.10	12.07	1	
Karatoa	Chakrahimpur	20.15	17.16	17.14	1	
Brahmaputra	Chilmari	23.70	20.01	20.08	1	
Teesta	Dalia	52.60	50.95	51.04	1	
Balu	Demra	5.75	2.86	2.97	1	
Jamuna	Dewanganj	19.00	NP	NP	1	
Buriganga	Dhaka	6.00	2.62	2.58	1	
Dhaleswari	Elasinghat	11.40	6.85	6.84	1	
Ghagot	Gaibandha	21.70	18.34	18.32	1	
D	L la vila a una a un	E 00	2.55	2.40		

JPL

Water level data in Bangladesh

- BWDB and other government departments of Bangladesh refer water level to the Public Works Datum (PWD)
 - PWD is located approx. 1.5 ft (0.4572 m) below the mean sea level (MSL).

SPACE FLIGHT CENTER

Converting measurements to water level

Accuracy assessment

SPACE FLIGHT CENTER

- Event: 2017 Bangladesh flood
 - Observation date: September 10, 2017

Relevant Literature

- Carabajal, C.C. and Boy, J.P., 2020. ICESat-2 Altimetry as Geodetic Control. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, pp.1299-1306.
- Crippen, R., Buckley, S., Belz, E., Gurrola, E., Hensley, S., Kobrick, M., Lavalle, M., Martin, J., Neumann, M., Nguyen, Q. and Rosen, P., 2016. NASADEM global elevation model: methods and progress.
- Garousi-Nejad, I., Tarboton, D., Aboutalebi, M., and Torres-Rua, A., 2019. Terrain analysis enhancements to the height above nearest drainage flood inundation mapping method. Water Resources Research, 55(10), 7983-8009.
- Grohmann, C.H., 2018. Evaluation of TanDEM-X DEMs on selected Brazilian sites: Comparison with SRTM, ASTER GDEM and ALOS AW3D30. Remote Sensing of Environment, 212, pp.121-133.
- Leister-Taylor, V. et al. (2020) GEO1988-CopernicusDEM-RP-001_ValidationReport_I3.0.pdf. AO/1-9422/18/I-LG. ESA.
- Neuenschwander, A. and Pitts, K., 2019. The ATL08 land and vegetation product for the ICESat-2 Mission. Remote sensing of environment, 221, pp.247-259.
- Nobre, A.D., Cuartas, L.A., Hodnett, M., Rennó, C.D., Rodrigues, G., Silveira, A., Waterloo, M. and Saleska, S., 2011. Height above the nearest drainage—a hydrologically relevant new terrain model. Journal of Hydrology, 404, 13–29.
- Pekel, J.F., Cottam, A., Gorelick, N. and Belward, A.S., 2016. High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), pp.418-422.
- Rahmati, O., Kornejady, A., Samadi, M., Nobre, A.D. and Melesse, A.M., 2018. Development of an automated GIS tool for reproducing the HAND terrain model. Environmental Modelling & Software, 102, pp.1-12.
- Rennó, C.D., Nobre, A.D., Cuartas, L.A., Soares, J.S., Hodnett, M.G., Tomasella, J. and Waterloo, M.J., 2008. a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia. Remote Sensing of Environment, 112(9), 3469-3481.
- Uuemaa, E., Ahi, S., Montibeller, B., Muru, M. and Kmoch, A., 2020. Vertical Accuracy of Freely Available Global Digital Elevation Models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sensing, 12(21), p.3482.

QUESTIONS?

