HYDROSAR – WEATHER-RELATED HAZARD INFORMATION FROM SAR

Contributors:

F.J Meyer¹⁾, A. Molthan²⁾, L. Schultz²⁾, J. Bell²⁾, B. Osmanoglu³⁾, M.J. Jo³⁾, D.B. McAlpin¹⁾, T. Meyer¹⁾, B. Kubby¹⁾, A. Lewandowski¹⁾, B. Chapmann⁴⁾, M. Matin⁵⁾, R. Thapa⁵⁾, B. Bajracharya⁵⁾, K. Tsering⁵⁾

¹⁾Geophysical Institute, University of Alaska Fairbanks, Fairbanks; ²⁾NASA Marshall Space Flight Center, Huntsville, AL; ³⁾Goddard Space Flight Center, Greenbelt, MD; ⁴⁾Jet Propulsion Laboratory, Pasadena, CA; ⁵⁾ICIMOD, Kathmandu, Nepal

Lecture 1: An intro to Synthetic Aperture Radar (SAR) with a Focus on Its Applications for Flood Mapping

HydroSAR is an SERVIR-AST-Funded Project to Develop Products, Tools & Services to Support Monitoring Hydrological Hazards in the HKH Region

SAR-based value-added products

ICIMOD

SERVIF

Cloud-based Computational Resources

Automatic Cloud-based Production Pipelines

Exercising mature algorithm large scale using cloud-based workflows

PL

HydroSAR Development Team

UAF

UNIVERSITY OF ALASKA FAIRBANKS

University of Alaska Fairbanks / Alaska Satellite Facility ASF

- Franz J Mever
- Eric Lundell
- Alex Lewandowski
- Brooke Kubby
- **Thomas Meyer**

- Andrew Molthan
- Lori Schultz
- Jordan Bell
- Ronan Lucey ٠

- Batuhan Osmanoglu
- MinJeong Jo
- **Elodie Macorps**

Bruce Chapman ٠

HydroSAR Partners

HydroSAR Training Syllabus

- The Syllabus and all lecture materials can be found here:
 - <u>https://drive.google.com/drive/folders/1</u>
 <u>QOdS5P3kv52pkkjidsY8Jlkil-</u>
 <u>3lsSBn?usp=sharing</u>

HydroSAR Training: Extracting Flood Information from SAR

1. Course Information:

- Title: Extracting Flood Information from SAR Time Series Data
- Course Type: Synchronous Remote Training

- Format and Duration: Four-session training three-hours each
- Dates and Times: U.S: Jan 25 28, 2021
 - Nepal: Jan 26 29, 2021
- Prerequisites:
 - ARSET Fundamentals of Radar Remote Sensing training: <u>https://appliedsciences.nasa.gov/join-mission/training/english/introduction</u> <u>-synthetic-aperture-radar</u>
 - Basic knowledge of Python (for help with Python please see):
 - https://www.w3schools.com/quiztest/quiztest.asp?qtest=PYTHON
 - <u>https://pynative.com/basic-python-quiz-for-beginners/</u>

BENEFITS OF RADAR REMOTE SENSING

Wavelength Discriminates Radar from Optical Data

• Radar has excellent capabilities for routine global change monitoring

- 24/7 imaging capabilities:
- Advanced change detection performance:
- Complementary to optical sensors:

due to weather and illumination independence

nce: due to stable image geometry and own signal source

provides independent information about surface

ICIMOD

IPL

NASA

SERVIR

Weather Independence Provides Advantages Especially For Weather-Related Events such as Flooding and Rain-Triggered Landslide Activity

ICIMOD

IPL

NASA

SERVIR

ALASKA

NASA

ASF

Modern SAR Sensors provide regularly-sampled, high-resolution & weatherindependent earth observation data from Space

ESA Sentinel-1 SAR

Preparation for NASA-ISRO SAR (NISAR) Radar Earth Observation Satellite Project

ICIMOD

NASA

SERVIR

ÐL

LAUNCH SPRING 2023

- First spaceborne L- and S-band SAR
- Full global coverage in 12 days
- 150 Petabyte of Earth Observation data / year
- All Data Free and Open!

NISAR Data Center NISAR Ground Station NISAR Science Team Member NISAR L2 Algorithm Development

(approximate)							
Band	Frequency f_0		Wavelength $\lambda = c/f_0$		Typical Application		
Ка	27 – 40	GHz	1.1 - 0.8	cm	Rarely used for SAR (airport surveillance)		
К	18 – 27	GHz	1.7 - 1.1	cm	Rarely used for SAR (H ₂ O absorption)		
Ku	12 - 18	GHz	2.4 - 1.7	cm	Rarely used for SAR (satellite altimetry)		
Х	8 – 12	GHz	3.8 - 2.4	ст	High-resolution SAR (urban monitoring; ice and snow; little penetration into vegetation cover; fast coherence decay in vegetated areas)		
С	4 – 8	GHz	7.5 – 3.8	ст	SAR workhorse (global mapping; change detection; monitoring areas with low to moderate vegetation; improved penetration; higher coherence)		
S	2 – 4	GHz	15 – 7.5	ст	Little but increasing use for SAR-based Earth obs.; agriculture monitoring (NISAR will carry S-band; expands C-band applications to higher vegetation density)		
L	1-2	GHz	30 – 15	ст	Medium resolution SAR (Geophysical monitoring; biomass and vegetation mapping; high penetration; InSAR)		
Ρ	0.3 – 1	GHz	100 - 30	cm	Biomass estimation . First P-band spaceborne SAR will be launched ~2020; vegetation mapping and assessment. Experimental SAR.		

IAE

ALASKA

ASF

Depending on Signal Wavelength, SAR can Penetrate Into Vegetation and Soils

SERVIR

• Example: X-band vs P-band penetration into Forest Canopies

ICIMOD

Traverse oscillating waves (like EM waves) have one additional degree of freedom: Direction in which oscillation takes place, called Polarization

In Radar, we can Control the Polarization of the Transverse Oszillating Signal \rightarrow Its Polarization

- Polarization planes are perpendicular orientation technically arbitrary
- Usually, horizontal and vertical planes are chosen
- The terms horizontal and vertical then refer to either the earth or the antenna surface

NASA

ICIMOD

JPL

Example of Multiple Polarizations for Vegetation

Studies - Pacaya-Samiria Forest Reserve in Peru

SERVIR

WHAT IS SYNTHETIC APERTURE RADAR (SAR)?

Radar Principle

NASA

ICIMOD JPL

NASA Goddard SPACE FLIGHT CENTER

SERVIR

UNIVERSITY OF ALASKA FALASKA

ASF

How to Form a Radar Image

Scanning Ground-based Radar System as a SLAR Example

• Resolution defined by pulse length & length of antenna

NASA

ICIMOD

JPL

Example of Scanning Ground-Based Radar Acquisition

SERVIR

• 180 degrees scan angle – location: Fairbanks, Alaska

The Problem of SLARs – Azimuth Resolution Degrades with Distance

Antenna Size vs. Beam Width

Formation of a Synthetic Aperture — SAR Principle

Modern Radars (so called **SAR'**s) Enable Meter-Resolution Imaging from Space

Guelb er Richat, Mauritania

Shallow ring structures of limestone, dolomites, and brecchias (TerraSAR-X image, July 8, 2007, courtesy: DLR)

	SEASAT	JERS-1 Japan	ALOS PALSAR Japan	ALOS-2 PALSAR-2 Japan	ALOS-4 PALSAR-3 Japan	SAOCOM, 1A / 1B Argentina	NISAR USA/India
Operation Date	1978 (105 days)	1992- 1998	1/2006 4/2011	2014	2020	2018/2019	2022
Frequency Band	L	L	L	L	L	L	L
Polarization	НН	НН	Polarimetric	Polarimetric	Polarimetric	Dual	Dual
Spatial Resolution [m]	20	18	10, 20, 100	3 - 100	3 - 100	10-100	10
Repeat Cycle [days]	17	44	46	14	14	16/8	12

ASF

	RADARSAT-1 Canada	RADARSAT-2 Canada	RADARSAT Constellation Mission Canada	ERS-1/2 Europe	Envisat Europe	Sentinel-1 ESA	_
Launch/ Operation Date	1995	2007	2018	1991- 2011	2002-2012	2014 (A) 2016 (B)	Continul 1
Frequency Band	С	С	С	С	С	С	C/D approved for operations
Polarization	НН	Quad-pol	Quad-pol	VV	HH, VV, HV	Dual-Pol Interferometric	until 2030
Spatial Resolution [m]	10-100	3-100	3-100	30	10-100	5-100	
Repeat Cycle [days]	24	24	1	3/75/176	35	12/6	

	TerraSAR-X Tandem-X DLR/InfoTerra	Cosmo SKYMED Constallation, ASI, eGeos
Operation Date	4/2007 2009 Tandem-X	2007
Frequency Band	X	X
Polarization	Polarimetric Interferometric	Polarimetric Interferometric
Spatial Resolution [m]	Up to 1	Up to 1
Repeat Cycle [days]	11	16

	ESA Biomass Mission Europe	NISAR USA/India
Operation Date	2018	2020
Frequency Band	Р	S
Polarization	Polarimetric Interferometric	Polarimetric Interferometric
Spatial Resolution [m]	50-200	~3
Repeat Cycle [days]	25	12

GEOMETRIC PROPERTIES OF SAR

Three Types of Geometric Distortions Occur As a Consequence of Oblique Look Angle

ICIMOD

IPL

NASA

SERVIR

ALASKA

Examples of Geometric and Radiometric Distortions in SAR Imagery

CORRECTING GEOMETRIC PROPERTIES OF SAR

- Geometric terrain correction (GTC) describes how to remove geometric distortions by using a DEM in the geocoding process:
 - To make sure that ALL pixels appear at their proper geographic location
 - To allow for overlaying SAR data onto remote-sensing data from different sensors
- **GTC problem:** What are the image gray values in every pixel of the output (geocoded) image given the input image and the DEM?
- Geocoding *including GTC* uses a Digital Elevation Model to project every image pixel onto its right location on the earth surface

Geometric Terrain Correction Example (I)

- **Problem:** Sensor facing slopes appear overly bright in radar images.
- Cause: Pixel Size on sensor-facing slopes is larger → more ground is integrated into pixel → brightness goes up

• Solution: Radiometric Terrain Correction (RTC)

- 1. Using DEM and observation geometry, calculate *exact equivalent area* A_{σ} covered by each pixel
- 2. Normalize radar cross section by A_{σ} to arrive at terrain normalized data σ_T^0

Radiometric Terrain Correction Example (II)

Sentinel-1 RTC images over El Salvador and Honduras

HOW SAR SEES THE WORLD

SAR Characteristics Relevant for Ecosystems Monitoring

• SAR backscatter values are determined by both sensor and target characteristics

• Sensor Characteristics:

- frequency/wavelength of the SAR,
- polarization of the transmitted and received SAR signal,
- incidence angle of the radar beam interacting with the ground,
- and look direction of the sensor

Especially for time series analysis: Use data with same sensor characteristics → avoid misinterpretation of sensor characteristics as change

• Target Characteristics:

- Surface roughness and vegetation structure → more roughness and more structure increase SAR backscatter
- Increased moisture in soils and vegetation \rightarrow increase SAR backscatter
- Standing open water → typically very dark However, wind and currents can rough up water and increase brightness especially for short wavelength (X- and C-band) observations

ICIMOD

- At longer wavelengths, double-bounce effect under canopies can have strong backscatter signal (see Slide 9)

Radar Interaction with Objects on the Surface

- At Radar wavelength, scattering is very physical and can be described as a series of bounces on scattering interfaces
- Three main scattering mechanisms dominate:
 - Scattering on (rough) surfaces: Water, bare soils, roads Scattering strongly dependent on surface roughness and sensor wavelength (see Slide #6)
 - Double-bounce scattering: Buildings, tree trunks, light poles little wavelength dependence
 - Volume Scattering: Vegetation; dry soils with high penetration strongly dependent on sensor wavelength and dielectric properties of medium

ICIMOD

Smooth, level surface (open water, road)

Pixel Color

rough bare surface (deforested areas, tilled agricultural fields)

Pixel Color

AS

Volume Scattering by Vegetation

Vegetation

Pixel Color

Inundated Vegetation

Pixel Color

Influence of Wavelength on Signal Penetration

HydroSAR Training, 01/2021 - 46

• Penetration into vegetation and soils increases with sensor wavelength

L-band penetration > C-band > X-band

• For vegetated areas:

- X-band SAR mostly scatters at the tops of tree canopies
- C- and L-band signals penetrate increasingly → more volume scattering & better for vegetation characterization
- Longer wavelength → improved mapping of inundation under forest canopies
- Penetration into soils also strongly dependent on soil moisture content (see slide 21)

Inundation under Vegetation at L-band Frequencies

- Increased double-bounce effect from bellow-canopy flooding at L-HH polarization from ALOS-1:
 - Left: Low-water season and
 - **Right**: High-water season
 - Note the brightening of the forests during inundation

Annual Maximum Inundation in the Amazon derived from L-band HH and HV ALOS PALSAR-2 Data

Horizontal Transmit Horizontal Receive

Vertical Transmit Vertical Receive

Relative scattering strength by polarization:

- Pure Surface Scattering: $|S_{VV}| > |S_{HH}| > |S_{HV}| \text{ or } |S_{VH}|$
- Double Bounce Scattering: $|S_{HH}| > |S_{VV}| > |S_{HV}| \text{ or } |S_{VH}|$
- Volume Scattering:

main source of $|S_{HV}|$ and $|S_{VH}|$

Example of Multiple Polarizations for Vegetation

Studies - Pacaya-Samiria Forest Reserve in Peru

HydroSAR Training, 01/2021 - 51

VV

Selected Additional SAR Training Resources

Adaro

SPACE FLIGHT CENTER

NASA

UP NEXT: INTRODUCTION TO THE OPENSARLAB

NASA

SERVIR

ALASKA

QUESTIONS?

ASF

ICIMOD JPL

