# EMPOWERING WOMEN IN GEOSPATIAL INFORMATION TECHNOLOGY

# Remote sensing indices and their applications

21 May, 2020

Dr. Poonam Tripathi Training Analyst, Capacity Building ICIMOD

# **Electromagnetic spectrum (EMR)**

From very short Gamma rays to very long radio waves



Blue (400 – 500), Green (500 – 600) and Red (600 – 700nm) bands

### **Features in Sentinel-2A satellite bands**

|                             |                  |                       | 2         | Store Look           | Spectral<br>/wavelength | Martin Rock              | Spatial   |
|-----------------------------|------------------|-----------------------|-----------|----------------------|-------------------------|--------------------------|-----------|
| Kabul region of Afghanistan |                  |                       | 77. 4     | Band                 | range (nm)              | Objective                | range (m) |
|                             | <u>g.e</u> e     |                       | B1        | Coastal aerosol      | 433-453                 | Aerosol correction       | 60        |
|                             |                  | The start             |           |                      |                         | Aerosol correction,      |           |
| THANK &                     |                  |                       | B2        | Blue                 | 458-523                 | land measurement         | 10        |
| C. Mark                     | S. M. S.         |                       | B3        | Green                | 543-578                 | Land measurement         | 10        |
| Stranger 1                  |                  |                       | B4        | Red                  | 650-680                 | Land measurement         | 10        |
|                             |                  |                       | B5        | Red edge1 (RE1)      | 698-713                 | Land measurement         | 20        |
| Google Earth                | B2 (Blue)        | B3 (Green)            | B6        | Red edge2 (RE2)      | 733-748                 | Land measurement         | 20        |
|                             |                  |                       | B7        | Red edge3 (RE3)      | 773-793                 | Land measurement         | 20        |
| 1 the W                     |                  |                       |           |                      |                         | Water vapour correction. |           |
| 2. Or K                     |                  |                       | <b>B8</b> | Near infra red       | 785-900                 | Land measurement         | 10        |
|                             |                  |                       |           |                      |                         | Water vapour correction. |           |
|                             |                  |                       | B8a       | Near infrared narrow | 855-875                 | Land measurement         | 20        |
|                             | in the part of a | the test which is the | B9        | Water vapour         | 935-955                 | Water vapour correction  | 60        |
| B4 (Red)                    | B6 (NIR)         | B9 (SWIR)             | B10       | Shortwave infrared   | 1360-1390               | Cirrus detection         | 60        |
|                             |                  |                       | B11       | Shortwave infrared 1 | 1565-1655               | Land measurement         | 20        |
|                             |                  |                       |           |                      |                         | Aerosol correction,      |           |
|                             |                  |                       | B12       | Shortwave infrared 2 | 2100-2280               | land measurement         | 20        |

### Features in Landsat satellite bands

| K         |                      | Spectral   |                           | Spatial   |
|-----------|----------------------|------------|---------------------------|-----------|
| ST B      | Band                 | range (nm) | Objective                 | range (m) |
| B1        | New deep blue        | 433-453    | Aerosol/coastal zone      | 30        |
| B2        | Blue                 | 450-515    | Pigments/coastal/scatter  | 30        |
| B3        | Green                | 525-600    | Pigments/coastal          | 30        |
| B4        | Red                  | 630-680    | Pigments/coastal          | 30        |
| <b>B5</b> | Near infra red       | 845-885    | Foliage/coastal           | 30        |
| B6        | Shortwave infrared 2 | 1560-1660  | Foliage                   | 30        |
| B7        | Shortwave infrared 3 | 2100-2300  | Mineral/litter/no scatter | 30        |
| B8        | Panchromatic         | 500-680    | Image sharpening          | 15        |
| B9        | Shortwave infrared   | 1360-1390  | Cirrus cloud detection    | 30        |

<u>https://www.sentinel-hub.com/develop/documentation/eo\_products/Sentinel2EOproducts</u>
 <u>https://modis.gsfc.nasa.gov/about/specifications.php</u>
 <u>https://gisgeography.com/landsat-8-bands-combinations/</u>

### **Difference between Landsat and Sentinel data**

|                        | Landsat-8-OLI           | Sentinel-2A      |
|------------------------|-------------------------|------------------|
| Bands                  | 9                       | 13               |
| Spectral range (µm)    | 0.435-1.384             | 0.44-2.22        |
| Spatial resolution (m) | 30                      | 10,20,60         |
| Temporal resolution    | 16 days                 | 10 days          |
|                        | <b>Operational Land</b> | Multi-Spectral   |
| Sensor                 | Imager (OLI)            | Instrument (MSI) |
| Туре                   | Multi-spectral          | Multi-spectral   |
| Satellite              | Landsat-8               | Sentinel-2A      |
|                        | U.S. Geological         | European Space   |
| Operator               | Survey (USGS)           | Agency (ESA)     |





- Undesirable effects on recorded radiances (e.g. variable illumination) caused by variation in topography
- Differences in brightness values from identical surface material or vice versa are caused by topographic slope and aspect, shadows or seasonal changes
- These hamper the ability of interpreter to correctly identify surface material in image
- Ratio transformation can be used to reduce the effects of such environmental conditions



Spectral response and reflectance is similar from two different objects in RED band of Sentinel-2A

Google Earth



Google Earth



NIR band



Spectral signature of two different objects are mixed in NEAR-INFRA RED band of Sentinel

Google Earth



NIR band



Spectral signature of two different objects are mixed in NEAR-INFRA RED band

- Specific target has an individual and characteristic manner of interacting with incident radiation
- >Interaction are described by
  - the **spectral response** of the target in a particular wavelength of EMR



**Spectral curves for various natural features** 

### Differences between histogram

of Red and near-infrared Histogram reflectance representing more pixel frequency at higher reflectance in NIR of Sentinel-2A data



GEE

**B4 (Red)** 



# **Spectral indices**

- 1. Spectral indices help in modelling, predicting, or infer surface processes
- 2. Developed to assess and monitor several land change processes
- 3. Computed from multiband images by adding and subtracting bands thereby making various band ratio
- 4. Emphasizes a specific phenomenon that is present, while mitigating other factors
- Vegetation health and status
- Burned area
- Fire severity etc.

# **Development of spectral indices**

- 1. Initially intrinsic indices were developed from simple band ratios, which highlighted the spectral properties of vegetation at different stages of growth and senescence.
- 2. To compensate for background effects such as that caused in areas in which the soil response dominates over the vegetation.
- 3. To compensate for the effects of atmospheric distortion.
- 4. Development of new spectral indices to applications other than vegetation health. These include indices for burned area assessment and fire severity etc.

# The criterion of a spectral index

- Maximize the sensitivity of certain surface feature (e.g. plant biophysical properties). Ideally, such responses should change linearly to allow both ease of scaling and use over a wide range of surface conditions.
- Normalize or reduce effects due to sun angle, viewing angle, the atmosphere, topography, instrument noise, etc., to allow consistent spatial and temporal comparisons
- Be linked to specific and measurable **surface processes** (e.g. biophysical parameter such as leaf area index (LAI), biomass, absorbed photosynthetically active radiation (APAR, etc.)) i.e. be related to a measurable parameter or process
- Source: Jenson (RSE Book, 2000)

# Use of ratio to reduce topographic effects

#### **Example 1**



Figure 7.25 Reduction of scene illumination effects through spectral ratioing. (Adapted from Sabins, 1997.)

#### NB. The objective is to map 2 classes –coniferous and deciduous forest

0.96

# Use of indices to reduce topographic effects

#### **Example 2 from Kabul**

False color composite (FCC)



Normalized difference vegetation indices (NDVI)



Sunlit: 0.36 Shaded:0.359

R and NIR represents the reflectance in red and near infra-red band of Sentinel for SUNLIT and SHADED region and their respective ratio in NDVI image

- Enhances green vegetation so that plants appear distinct from other image features
- Reflectance of light spectra from plants changes with plant type, water content within tissues, and other intrinsic factors
- Vegetation reflectance is determined by chemical and morphological characteristics of the surface of organs or leaves e.g. leaf structure, leaf pigments etc.



.

Simple Difference Vegetation Index

DVI = NIR-R (Richardson et al., 1977)

- Distinguishes between **soil** and **vegetation**
- Does Not deal with the atmospheric effects

#### Ratio-based Vegetation Index

RVI = R/NIR (Jordan 1969)

- Reduces the effects of atmosphere and topography
- Low for soil, ice, water, etc.



- Normalized Difference Vegetation HEALTHY Index
- Standard method for comparing the vegetation greenness from satellite
- > NDVI = (NIR)-(RED)/ (NIR)+ (RED)
- Explains density of vegetation
- The NDVI values tentatively ranges between -1 to +1, the values close to +1 denotes the good health of vegetation



NDVI is sensitive to the effects of soil and atmosphere and saturates at high density of vegetation



NDVI



Negative values correspond to areas with water surfaces, manmade structures, rocks, clouds, snow;

> Plants will always have positive values between 0.2 and 1.

#### Soil Adjusted Vegetation Index

- The concept of distinction of vegetation from the soil background was proposed by Richardson and Wiegand., 1977
- Soil background conditions exert considerable influence on partial canopy spectra and the calculated vegetation indices

#### SAVI = ((NIR - Red) / (NIR + Red + L)) x (1 + L) Huete, 1988

- Minimizes soil brightness influence
- L is a variable ranges within -1 to 1, depending on the amount of green vegetation present in the area
- To run the remote sensing analysis of areas with high green vegetation, L is set to be zero (in which case SAVI index data will be equal to NDVI); whereas low green vegetation regions require L=1

- Atmospherically Resistant Vegetation Index (ARVI; Kaufman and Tanré, 1992)
- > Relatively prone to atmospheric factors (such as aerosol)
- > Atmosphere affects significantly **Red** region compared to the **NIR**
- Corrected for atmospheric scattering effects in the red reflectance spectrum by using the measurements in blue wavelengths.

ARVI = (NIR - (2 \* Red) + Blue) / (NIR + (2 \* Red) + Blue)

- Eliminates the effect of atmospheric aerosols
- Monitoring tool for tropical mountainous regions often polluted by soot coming from slash-and-burn agriculture

Land Surface Water Index (LSWI)

#### NIR-SWIR/NIR+SWIR

- LSWI is sensitive to changes in vegetation canopy water content and indicates the water stress
- Vegetation Condition Index (VCI)
  (NDVI-NDVI<sub>min</sub>/NDVI<sub>max</sub>- NDVI<sub>min</sub>)\*100
  Lower and higher values indicate bad and good vegetation state conditions



### Water indices

- > Used to highlight the water bodies while suppressing the other land cover
- Water absorbs more energy (low reflectance) in NIR and SWIR wavelengths
- > Have the greatest reflectance in the blue portion of the visible spectrum
- Clear water has high absorption and virtually no reflectance in near infrared wavelengths range and beyond

#### **Factors affecting water**

- > Algae: Water with higher algal density reflect more in green bands
- Turbidity: Turbid water has a higher reflectance in the visible region than clear water. This is also true for waters containing high chlorophyll concentrations

### Water indices



Reflectance response of water with different levels of turbidity

# **Snow indices**

Ice and snow generally have high
 reflectance across all visible
 wavelengths, thus bright white
 appearance

 The low reflection of ice and snow in the SWIR is related to their microscopic liquid water
 content

### Blue

#### Green

Red



# NIR







### **Snow indices**



Spectral reflectance curves of bare glacier ice, coarse-grained snow, and fine-grained snow. Spectral bands of selected sensor on Earth-orbiting satellites are shown in gray. The numbers in the gray boxes refer to the associated band numbers of each sensor

### Water and snow indices

#### Indices

#### Formula

| Normalized Difference Water Index (NDWI)           | GREEN-NIR/GREEN+NIR                    |
|----------------------------------------------------|----------------------------------------|
| Modified Normalized Difference Water Index (MNDWI) | GREEN-SWIR/GREEN+SWIR                  |
| Normalized Difference Pond Index (NDPI)            | MIR-GREEN/MIR+GREEN                    |
| Water Ration Index (WRI)                           | GREEN+RED/NIR+SWIR                     |
| Normalized Difference Turbidity Index (NDTI)       | RED-GREEN/RED+GREEN                    |
| Automated Water Extraction Index (AWEI)            | 4*(GREEN-SWIR2-<br>0.25*NIR+2.75*SWIR1 |
| Normalized Difference Snow Index (NDSI)            | GREEN-SWIR/GREEN+SWIR                  |
| Normalized Difference Snow and Ice Index (NDSII-1) | RED-SWIR/RED+SWIR                      |
|                                                    | GREEN (NIR-SWIR)/                      |
| Snow Water Index (SWI)                             | (GREEN+NIR)(NIR+SWIR)                  |

# Applications

- Vegetation mapping and monitoring
- Biodiversity assessment
- Estimation of biophysical parameters (LAI, fPAR)
- Phenological assessment
- Vegetation health/stress
- Forest degradation
- Biomass mapping and modelling
- Productivity and carbon assessment
- Crop condition monitoring and predicting crop yield

| Index                  | Wavebands                                                                       | Application          |  |  |
|------------------------|---------------------------------------------------------------------------------|----------------------|--|--|
| Ratio                  | $R_{NIR}/R_{red}$                                                               | Biomass, LAI, cover  |  |  |
| Normalized D           | ifference Vegetative Indices                                                    | 12A                  |  |  |
| Red NDVI               | $(R_{NIR} - R_{red})/(R_{NIR} + R_{red})$                                       | LAI, Intercepted PAR |  |  |
| Green NDVI             | $(R_{NIR} - R_{green})/(R_{NIR} + R_{green})$                                   | LAI, Intercepted PAR |  |  |
| Red Edge               | $(R_{NIR} - R_{red edge})/(R_{NIR} + R_{red edge})$                             | LAI, Intercepted PAR |  |  |
| NDVI                   | \$2                                                                             |                      |  |  |
| Soil Adjusted          | Vegetation Index                                                                |                      |  |  |
| SAVI                   | $(R_{\rm NIR} - R_{\rm red})(1 + L)/(R_{\rm NIR} + R_{\rm red} + L)$            | LAI                  |  |  |
| Enhanced Veg           | etation Index                                                                   |                      |  |  |
| EVI                    | $2.5(R_{NIR} - R_{red})/(R_{NIR} + 6R_{red} - 7.5R_{blue} + 1)$                 | LAI                  |  |  |
| Normalized Pi          | gment Chlorophyll Ratio Index                                                   | 80                   |  |  |
| NPCI                   | $(\text{Red}_{660} - \text{Blue}_{460})/(\text{Red}_{660} + \text{Blue}_{460})$ | Leaf chlorophyll     |  |  |
| Chlorophyll In         | ndices                                                                          |                      |  |  |
| CIgreen                | $(R_{NIR}/R_{green}) - 1$                                                       | Leaf chlorophyll     |  |  |
| CI <sub>red edge</sub> | $(R_{\rm NIR}/R_{\rm red\ edge}) = 1$                                           | Leaf chlorophyll     |  |  |
| Plant Senescen         | nce Reflectance Index                                                           | 6- 74 W 50           |  |  |
| PSRI                   | (Red <sub>660</sub> - Green <sub>510</sub> )/NIR <sub>760</sub>                 | Plant senescence     |  |  |

Source: Hatfield and Prueger (2010)



Source: Tripathi et al., 2014



Monthly pattern (January- December) of leaf area index (LAI) derived from NDVI (exponential relationship)

#### **Biomass estimation**

|            | AGB (t/ha) | CC (%) |
|------------|------------|--------|
| AGB (t/ha) | 1          |        |
| CC (%)     | 0.83       | 1      |
| NDVI       | 0.85       | 0.95   |
| EVI        | 0.75       | 0.91   |
| SR         | 0.86       | 0.96   |
| SAVI       | 0.70       | 0.84   |

Correlation between above ground biomass and vegetation indices for *Quercus rotundifolia* 

Source: Macedo et al., 2018, southern Portugal



#### **Drought Assessment**

#### TABLE 1.

Remote sensing data, indices and thresholds relevant to drought assessment used in the study.

| Drought index |                                                | Band or index used to<br>compute the index |                                   | Range      | Normal<br>condition        | Severe<br>drought | Healthy vegetation |
|---------------|------------------------------------------------|--------------------------------------------|-----------------------------------|------------|----------------------------|-------------------|--------------------|
|               |                                                | AVHRR                                      | MODIS                             |            |                            |                   |                    |
| 1.            | Normalized<br>difference<br>vegetation index   | Band 1<br>(0.58-0.68µm)                    | Band 1<br>(0.62-0.67µm)           | -1 to +1   | Depends on<br>the location | -1                | +1                 |
|               | (NDVI)                                         | Band 2<br>(0.73-1.10µm)                    | Band 2<br>(0.84-0.87µm)           |            |                            |                   |                    |
| 2.            | Drought severity index ( DEV <sub>NDVI</sub> ) | NDVI<br>NDVI long-term<br>mean             | NDVI<br>NDVI long-term<br>mean    | -1 to +1   | 0                          | -1                | +1                 |
| 3.            | Vegetation<br>condition<br>index (VCI)         | NDVI<br>NDVI long-term<br>minimum          | NDVI<br>NDVI long-term<br>minimum | 0 to 100 % | 50 %                       | 0%                | 100%               |
|               |                                                | NDVI long-term<br>maximum                  | NDVI long-term<br>maximum         |            | Source:                    | Thenkabai         | l and Gamage, 2004 |

Southwest Asia NDVI deviation

A monthly NDVI time series [] 0.25
 for a drought year (1987)
 and a wet year (1993) 0.2
 compared to the NDVI long term mean 0.15



Source: Thenkabail and Gamage, 2004



# Monthly median of drought condition in Herat province during vegetation seasons of 2003-2014 based on VCI

Source: Mohammad Ehsan Razipoor, 2019

http://www.fao.org/giews/earthobservation/asis/index\_2.jsp?lang=en

# Application of water and snow indices

- Water Mapping and monitoring
- Change detection
- Water quality assessment
- Flood monitoring and damage assessment
- > Algae assessment
- Snow and Ice mapping and monitoring



(a) Reference water cover map (b) Automated Water Extraction Index (AWEI), (c) Modified Normalized Difference Water Index (MNDWI), (d) Normalized Difference Water Index (NDWI), (e) Superfine Water Index (SWI)



# Water mapping and change dynamics

#### Simple water index (SWI)



Source: Acharya et al., 2019

#### Water inundation mapping

 Minimum and maximum inundation areas and their distributions during each climatological month between
 2000 and 2010 for Poyang Lake, China

Source: Feng et al. (2012)



#### Water quality assessment

Table 3. Correlation coefficient analyses between water quality and spectral indices

| Parameter | EC     | pH     | Nitrate | Nitrite | Silicate | Phosphate | O.M    | NDSI   | NDVI   | NDBI   | N/P<br>ratio |
|-----------|--------|--------|---------|---------|----------|-----------|--------|--------|--------|--------|--------------|
| EC        | 1      |        |         |         |          |           |        |        |        |        | 14110        |
| pH        | 0.192  | 1      |         |         |          |           |        |        |        |        |              |
| Nitrate   | 0.106  | 0.173  | 1       |         |          |           |        |        |        |        |              |
| Nitrite   | 0.2.92 | 0.144  | 0.806   | 1       |          |           |        |        |        |        |              |
| Silicate  | 0.827  | 0.229  | 0.46    | 0.721   | 1        |           |        |        |        |        |              |
| Phosphate | -0.016 | -0.353 | -0.28   | -0.069  | -0.002   | 1         |        |        |        |        |              |
| O.M       | -0.02  | -0.339 | -0.086  | -0.185  | -0.044   | -0.03     | 1      |        |        |        |              |
| NDSI      | -0.273 | 0.033  | -0.416  | -0.517  | -0.272   | -0.085    | 0.246  | 1      |        |        |              |
| NDVI      | 0.273  | -0.033 | 0.416   | 0.517   | 0.272    | 0.085     | -0.246 | -1     | 1      |        |              |
| NDBI      | -0.355 | -0.006 | -0.332  | -0.516  | -0.392   | 0.032     | 0.488  | 0.744  | -0.744 | 1      |              |
| N/P ratio | -0.221 | 0.329  | 0.897   | 0.738   | 0.334    | -0.171    | -0.096 | -0.345 | 0.345  | -0.135 | 1.000        |

Source: Ahmed M. El-Zeiny, 2018

#### Flood hotspot analysis

International Water Management Institute project



Source: Matheswaran et al, 2018



# **Application of snow indices**



Source: Bajracharya et al., 2015

# Thank You

E-mail: Poonam. Tripathi@icimod.org