

Electromagnetic spectrum (EMR)

From very short Gamma rays to very long radio waves

Blue (400 - 500), Green (500 - 600) and Red (600 - 700nm) bands

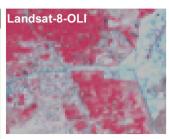
Features in Sentinel-2A satellite bands									
Kabul region of Af	ghanistan		Band	Spectral /wavelength range (nm)	Objective	Spatial range (m)			
		B1 B2	Coastal aerosol Blue	433-453 458-523	Aerosol correction Aerosol correction, land measurement	10			
		B3 B4	Green Red	543-578 650-680	Land measurement	10 10			
		B5 B6	Red edge1 (RE1)	698-713	Land measurement	20			
Google Earth B2 (Blue) B3 (Green)			Red edge2 (RE2) Red edge3 (RE3)	733-748 773-793	Land measurement Land measurement	20 20			
De &		B8	Near infra red	785-900	Water vapour correction, Land measurement	10			
		B8a	Near infrared narrow	855-875	Water vapour correction, Land measurement	20			
B4 (Red) B8 (NIR)	B9 (SWIR	B9 B10	Water vapour Shortwave infrared	935-955 1360-1390	Water vapour correction Cirrus detection	60 60			
= 2 ()	(- / · · · · ·	B10		1565-1655	Land measurement	20			
		B12	Shortwave infrared 2	2100-2280	Aerosol correction, land measurement	20			

Features in Landsat satellite bands

	Band	Spectral range (nm)	Objective	Spatial range (m)
B1	New deep blue	433-453	Aerosol/coastal zone	30
B2	Blue	450-515	Pigments/coastal/scatter	30
В3	Green	525-600	Pigments/coastal	30
B4	Red	630-680	Pigments/coastal	30
B5	Near infra red	845-885	Foliage/coastal	30
B6	Shortwave infrared 2	1560-1660	Foliage	30
B7	Shortwave infrared 3	2100-2300	Mineral/litter/no scatter	30
В8	Panchromatic	500-680	Image sharpening	15
B9	Shortwave infrared	1360-1390	Cirrus cloud detection	30

- 1. https://www.sentinel-hub.com/develop/documentation/eo_products/Sentinel2EOproducts
- 2. https://modis.gsfc.nasa.gov/about/specifications.php
- 3. https://gisgeography.com/landsat-8-bands-combinations/

https://www.sentinel-


hub.com/develop/documentation/eo_products/Sentinel2EOproducts

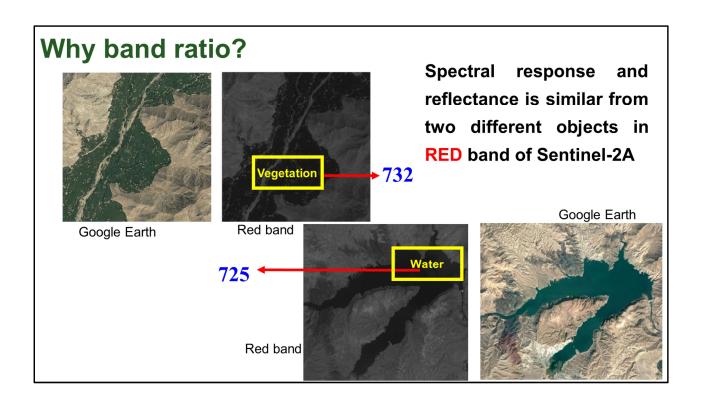
https://modis.gsfc.nasa.gov/about/specifications.php

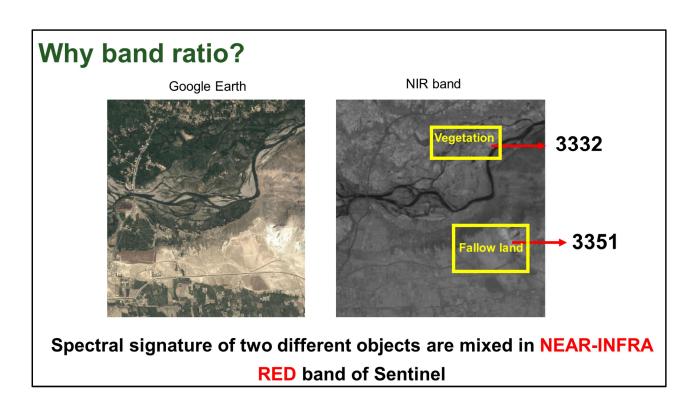
https://gisgeography.com/landsat-8-bands-combinations/

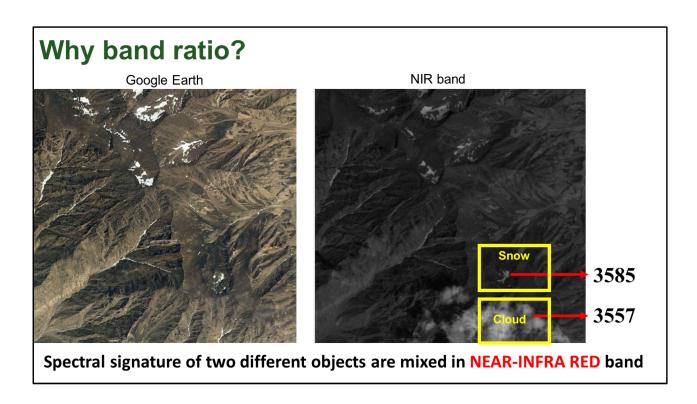
Difference between Landsat and Sentinel data

	Landsat-8-OLI	Sentinel-2A	
Bands	9	13	
Spectral range (µm)	0.435-1.384	0.44-2.22	
Spatial resolution (m)	30	10,20,60	
Temporal resolution	16 days	10 days	
	Operational Land	Multi-Spectral	
Sensor	Imager (OLI)	Instrument (MSI)	
Type	Multi-spectral	Multi-spectral	
Satellite	Landsat-8	Sentinel-2A	
	U.S. Geological	European Space	
Operator	Survey (USGS)	Agency (ESA)	

https://www.sentinel-

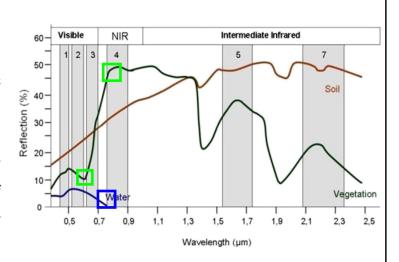

hub.com/develop/documentation/eo products/Sentinel2EOproducts

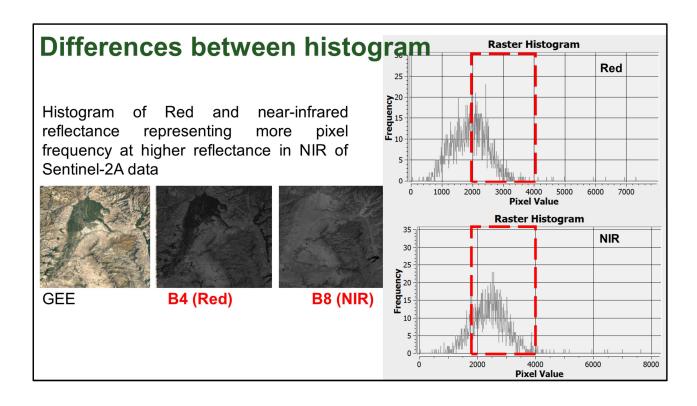

https://modis.gsfc.nasa.gov/about/specifications.php


https://gisgeography.com/landsat-8-bands-combinations/

Why band ratio?

- ➤ Undesirable effects on recorded radiances (e.g. variable illumination) caused by variation in topography
- ➤ Differences in **brightness values** from identical surface material or vice versa are caused by topographic slope and aspect, shadows or seasonal changes
- > These hamper the ability of interpreter to correctly identify surface material in image
- > Ratio transformation can be used to reduce the effects of such environmental conditions





Why band ratio?

- ➤ Specific target has an individual and characteristic manner of interacting with incident radiation
- ➤Interaction are described by the **spectral response** of the target in a particular wavelength of EMR

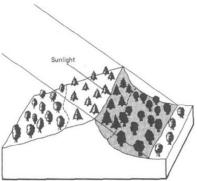
Spectral curves for various natural features

Spectral indices

- 1. Spectral indices help in modelling, predicting, or infer surface processes
- 2. Developed to assess and monitor several land change processes
- 3. Computed from multiband images by adding and subtracting bands thereby making various band ratio
- 4. Emphasizes a specific phenomenon that is present, while mitigating other factors
- Vegetation health and status
- Burned area
- Fire severity etc.

Development of spectral indices

- 1. Initially intrinsic indices were developed from simple band ratios, which highlighted the spectral properties of vegetation at different stages of growth and senescence.
- 2. To compensate for background effects such as that caused in areas in which the soil response dominates over the vegetation.
- 3. To compensate for the effects of atmospheric distortion.
- 4. Development of new spectral indices to applications other than vegetation health. These include indices for burned area assessment and fire severity etc.


The criterion of a spectral index

- Maximize the sensitivity of certain surface feature (e.g. plant biophysical properties). Ideally, such responses should change linearly to allow both ease of scaling and use over a wide range of surface conditions.
- Normalize or reduce effects due to sun angle, viewing angle, the atmosphere, topography, instrument noise, etc., to allow consistent spatial and temporal comparisons
- Be linked to specific and measurable **surface processes** (e.g. biophysical parameter such as leaf area index (LAI), biomass, absorbed photosynthetically active radiation (APAR, etc.)) i.e. be related to a measurable parameter or process

Source: Jenson (RSE Book, 2000)

Use of ratio to reduce topographic effects

Example 1

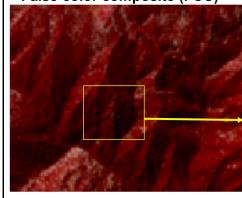
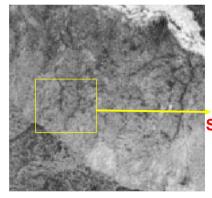

	Digital Number						
Land Cover/ Illumination	Band	Band	Ratio (Band A/Band B)				
Deciduous							
Sunlit	48	50	0.96				
Shadow	18	19	0.95				
Coniferous							
Sunlit	31	45	0.69				
Shadow	11	16	0.69				

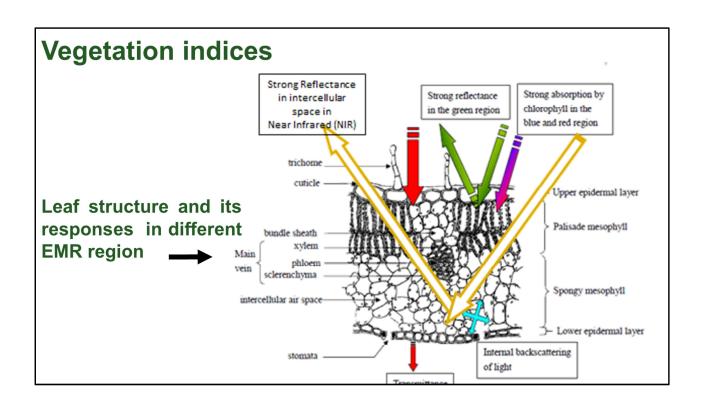
Figure 7.25 Reduction of scene illumination effects through spectral ratioing. (Adapted from Sabins, 1997.)

NB. The objective is to map 2 classes –coniferous and deciduous forest


Use of indices to reduce topographic effects

Example 2 from Kabul False color composite (FCC)

R: 703 NIR: 1502 R:480 NIR:1018

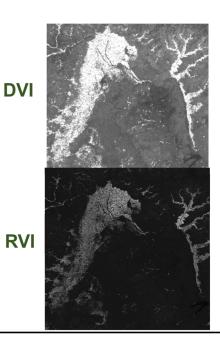

Normalized difference vegetation indices (NDVI)

Sunlit: 0.36 Shaded: 0.359

R and NIR represents the reflectance in red and near infra-red band of Sentinel for SUNLIT and SHADED region and their respective ratio in NDVI image

- ➤ Enhances green vegetation so that plants appear distinct from other image features
- Reflectance of light spectra from plants changes with plant type, water content within tissues, and other intrinsic factors
- ➤ Vegetation reflectance is determined by **chemical and morphological** characteristics of the surface of organs or
 leaves e.g. leaf structure, leaf pigments etc.

Simple Difference Vegetation Index

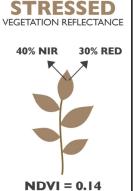

DVI = NIR-R (Richardson et al., 1977)

- Distinguishes between **soil** and **vegetation**
- Does Not deal with the atmospheric effects

❖ Ratio-based Vegetation Index

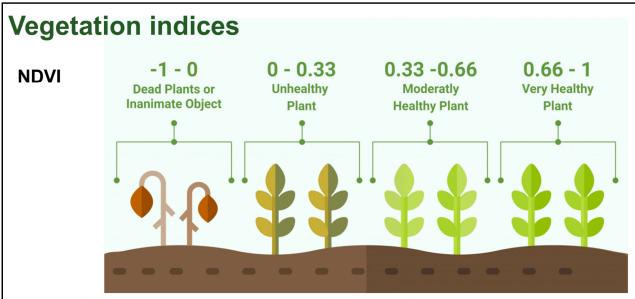
RVI = R/NIR (Jordan 1969)

- Reduces the effects of atmosphere and topography
- Low for soil, ice, water, etc.



❖ Normalized Difference Vegetation HEALTHY Index

- Standard method for comparing the vegetation greenness from satellite
- > NDVI = (NIR)-(RED)/ (NIR)+ (RED)
- > Explains density of vegetation


The NDVI values tentatively ranges between -1 to +1, the values close to +1 denotes the good health of vegetation

NDVI is sensitive to the effects of soil and atmosphere and saturates at high density of vegetation

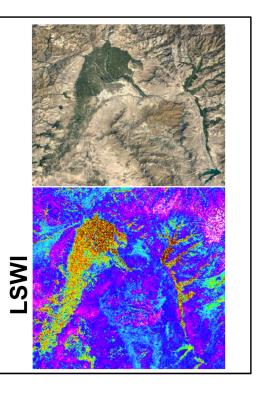
- Negative values correspond to areas with water surfaces, manmade structures, rocks, clouds, snow;
- ➤ Plants will always have positive values between **0.2 and 1.**

Soil Adjusted Vegetation Index

- ➤ The concept of distinction of vegetation from the **soil background** was proposed by Richardson and Wiegand., 1977
- ➤ Soil background conditions exert considerable influence on partial canopy spectra and the calculated vegetation indices
- ❖ SAVI = ((NIR Red) / (NIR + Red + L)) x (1 + L) Huete, 1988
- > Minimizes soil brightness influence
- ➤ L is a variable ranges within -1 to 1, depending on the amount of green vegetation present in the area
- ➤ To run the remote sensing analysis of areas with high green vegetation, L is set to be zero (in which case SAVI index data will be equal to NDVI); whereas low green vegetation regions require L=1

- ❖ Atmospherically Resistant Vegetation Index (ARVI; Kaufman and Tanré, 1992)
- > Relatively prone to atmospheric factors (such as aerosol)
- > Atmosphere affects significantly **Red** region compared to the **NIR**
- > Corrected for atmospheric scattering effects in the red reflectance spectrum by using the measurements in blue wavelengths.

ARVI = (NIR - (2 * Red) + Blue) / (NIR + (2 * Red) + Blue)

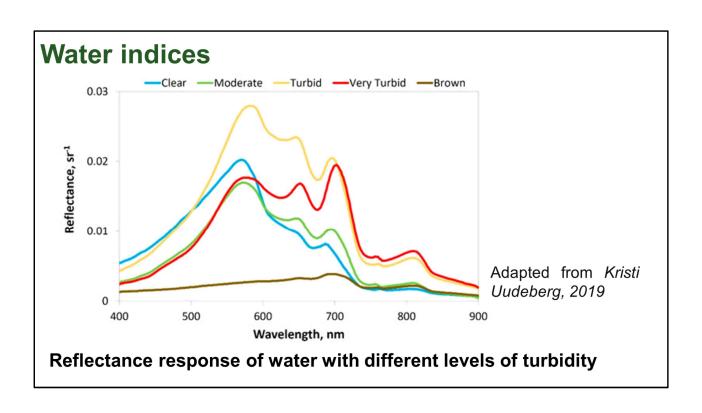

- Eliminates the effect of atmospheric aerosols
- Monitoring tool for tropical mountainous regions often polluted by soot coming from slash-and-burn agriculture

❖ Land Surface Water Index (LSWI)

NIR-SWIR/NIR+SWIR

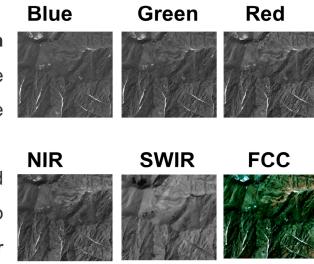
LSWI is sensitive to changes in vegetation canopy water content and indicates the water stress

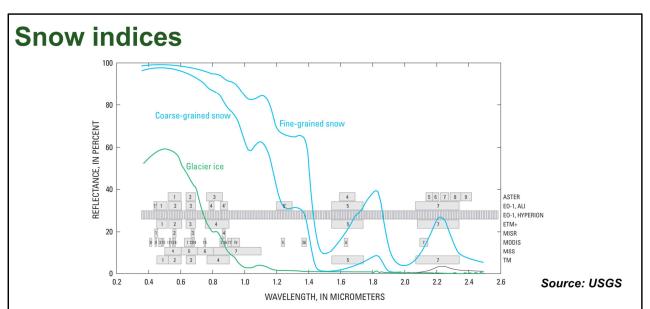
❖ Vegetation Condition Index (VCI) (NDVI-NDVI_{min}/NDVI_{max}- NDVI_{min})*100 Lower and higher values indicate bad and good vegetation state conditions



Water indices

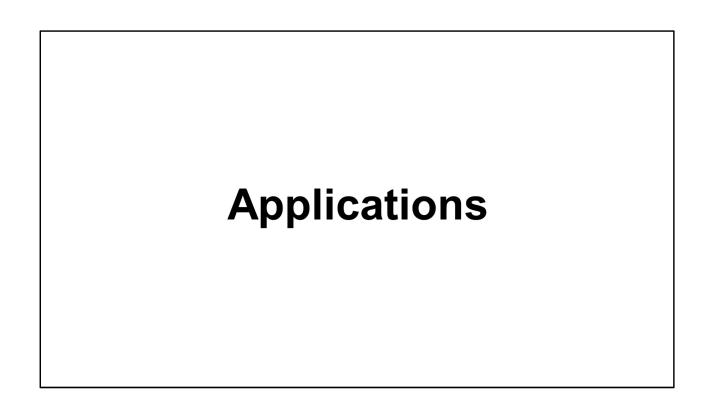
- > Used to highlight the water bodies while suppressing the other land cover
- Water absorbs more energy (low reflectance) in NIR and SWIR wavelengths
- > Have the greatest reflectance in the blue portion of the visible spectrum
- Clear water has high absorption and virtually no reflectance in near infrared wavelengths range and beyond


Factors affecting water


- > Algae: Water with higher algal density reflect more in green bands
- > Turbidity: Turbid water has a higher reflectance in the visible region than clear water. This is also true for waters containing high chlorophyll concentrations

Snow indices

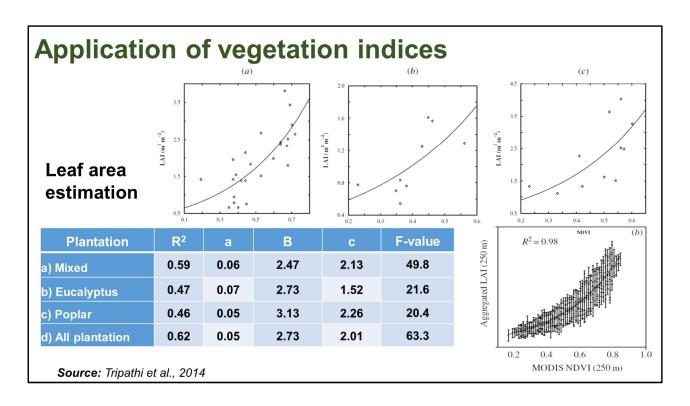
- Ice and snow generally have high reflectance across all visible wavelengths, thus bright white appearance
- ➤ The low reflection of ice and snow in the SWIR is related to their microscopic liquid water content



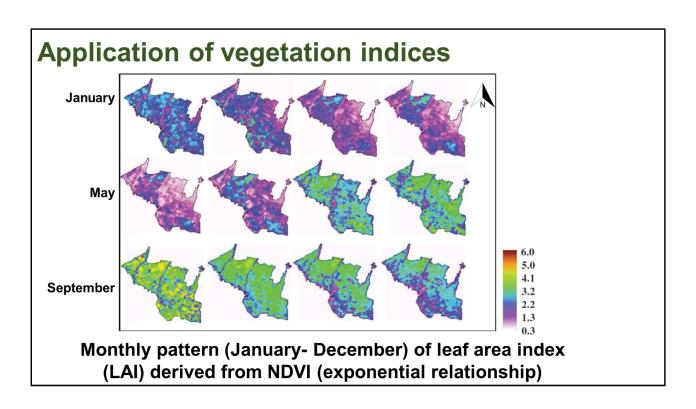
Spectral reflectance curves of bare glacier ice, coarse-grained snow, and fine-grained snow. Spectral bands of selected sensor on Earth-orbiting satellites are shown in gray. The numbers in the gray boxes refer to the associated band numbers of each sensor

Water and snow indices

Indices	Formula
Normalized Difference Water Index (NDWI)	GREEN-NIR/GREEN+NIR
Modified Normalized Difference Water Index (MNDWI)	GREEN-SWIR/GREEN+SWIR
Normalized Difference Pond Index (NDPI)	MIR-GREEN/MIR+GREEN
Water Ration Index (WRI)	GREEN+RED/NIR+SWIR
Normalized Difference Turbidity Index (NDTI)	RED-GREEN/RED+GREEN
Automated Water Extraction Index (AWEI)	4*(GREEN-SWIR2- 0.25*NIR+2.75*SWIR1
Normalized Difference Snow Index (NDSI)	GREEN-SWIR/GREEN+SWIR
Normalized Difference Snow and Ice Index (NDSII-1)	RED-SWIR/RED+SWIR
Snow Water Index (SWI)	GREEN (NIR-SWIR)/ (GREEN+NIR)(NIR+SWIR)



Application of vegetation indices


- Vegetation mapping and monitoring
- > Biodiversity assessment
- Estimation of biophysical parameters (LAI, fPAR)
- > Phenological assessment
- Vegetation health/stress
- > Forest degradation
- > Biomass mapping and modelling
- Productivity and carbon assessment
- > Crop condition monitoring and predicting crop yield

Index	Wavebands	Application
Ratio	R_{NIR}/R_{red}	Biomass, LAI, cover
Normalized Di	ifference Vegetative Indices	All the second s
Red NDVI	$(R_{NIR} - R_{red})/(R_{NIR} + R_{red})$	LAI, Intercepted PAR
Green NDVI	$(R_{NIR} - R_{green})/(R_{NIR} + R_{green})$	LAI, Intercepted PAR
Red Edge	$(R_{\rm NIR}-R_{\rm red~edge})/(R_{\rm NIR}+R_{\rm red~edge})$	LAI, Intercepted PAR
NDVI	N	4
Soil Adjusted	Vegetation Index	
SAVI	$(R_{NIR} - R_{red})(1 + L)/(R_{NIR} + R_{red} + L)$	LAI
Enhanced Veg	etation Index	0 000
EVI	$2.5(R_{NIR} - R_{red})/(R_{NIR} + 6R_{red} - 7.5R_{blue} + 1)$	LAI
Normalized Pi	gment Chlorophyll Ratio Index	W
NPCI	(Red ₆₆₀ - Blue ₄₆₀)/(Red ₆₆₀ + Blue ₄₆₀)	Leaf chlorophyll
Chlorophyll In	dices	*
CIgreen	$(R_{NIR}/R_{green}) - 1$	Leaf chlorophyll
CI _{red edge}	$(R_{NIR}/R_{red\ edge}) = 1$	Leaf chlorophyll
Plant Senescen	nce Reflectance Index	
PSRI	(Red ₆₆₀ - Green ₅₁₀)/NIR ₇₆₀	Plant senescence

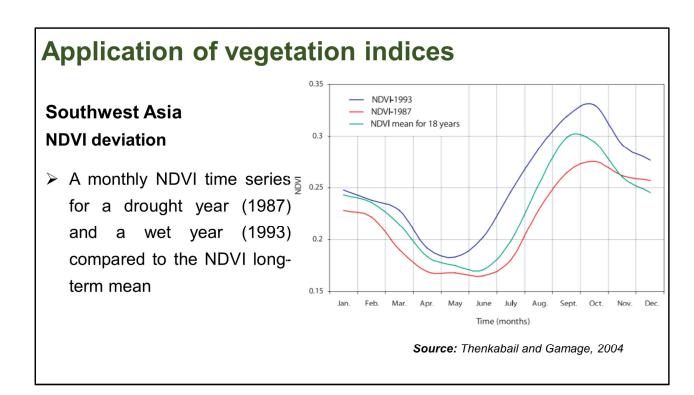
Source: Value of Using Different Vegetative Indices to Quantify Agricultural Crop Characteristics at Different Growth Stages under Varying Management Practices

Source: <u>Upscaling of leaf area index in Terai forest plantations using fine-and moderate-resolution satellite data</u>

Source: <u>Upscaling of leaf area index in Terai forest plantations using fine-and moderate-resolution satellite data</u>

Application of vegetation indices Biomass estimation AGB (t/ha) CC (%) AGB (t/ha) 1 CC (%) 0.83 **NDVI** 0.85 0.95 EVI 0.75 0.91 SR 0.96 0.86 **SAVI** 0.70 0.84 Correlation between above ground biomass and vegetation indices for Quercus rotundifolia Source: Macedo et al., 2018, southern Portugal Biomass (t/ha) N/A 1 - 22 23 - 27 28 - 36

Source: Above-ground biomass estimation for *Quercus rotundifolia* using vegetation indices derived from high spatial resolution satellite images


Application of vegetation indices

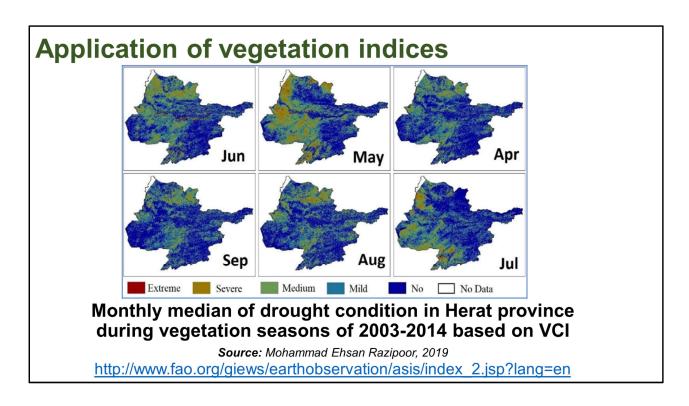
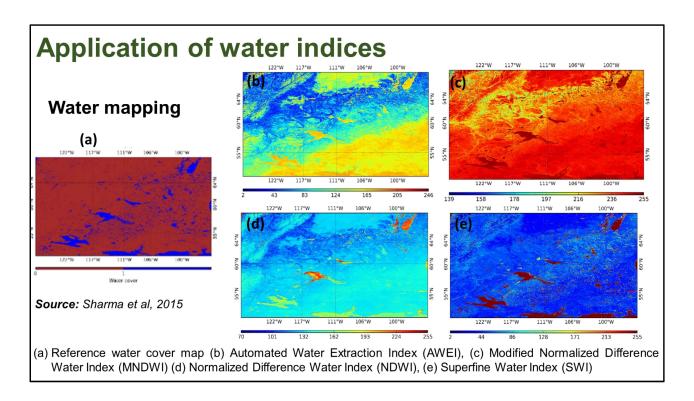
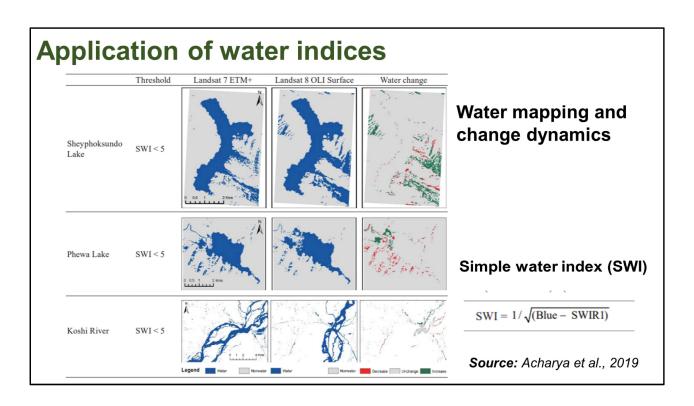

Drought Assessment

TABLE 1. Remote sensing data, indices and thresholds relevant to drought assessment used in the study.

	Drought index	Band or index used to compute the index		Range	Normal condition	Severe drought	Healthy vegetation
		AVHRR	MODIS				
1.	Normalized	Band 1	Band 1	-1 to +1	Depends on		
	difference vegetation index	(0.58-0.68µm)	(0.62-0.67µm)		the location	-1	+1
	(NDVI)	Band 2	Band 2				
		(0.73-1.10µm)	(0.84-0.87µm)				
2.	Drought severity	NDVI	NDVI	-1 to +1	0	-1	+1
	index (DEV _{NDVI})	NDVI long-term mean	NDVI long-term mean				
3.	Vegetation	NDVI	NDVI	0 to 100 %	50 %	0%	100%
	condition index (VCI)	NDVI long-term minimum	NDVI long-term minimum				
		NDVI long-term maximum	NDVI long-term maximum		Source:	Thenkabai	l and Gamage, 200

Source: The Use of Remote-Sensing Data for Drought Assessment and Monitoring in Southwest Asia

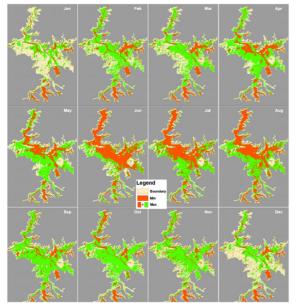



Source: Assessing the Vegetation Condition of Herat Province, Afghanistan Using GIS

Application of water and snow indices

- > Water Mapping and monitoring
- Change detection
- ➤ Water quality assessment
- > Flood monitoring and damage assessment
- > Algae assessment
- > Snow and Ice mapping and monitoring

Source: Developing Superfine Water Index (SWI) for Global Water Cover Mapping Using MODIS Data


Source: Evaluation of Water Indices for Surface Water Extraction in a Landsat 8 Scene of Nepal

Application of water indices

Water inundation mapping

Minimum and maximum inundation areas and their distributions during each climatological month between 2000 and 2010 for Poyang Lake, China

Source: Feng et al. (2012)

Source: Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010

Application of water indices

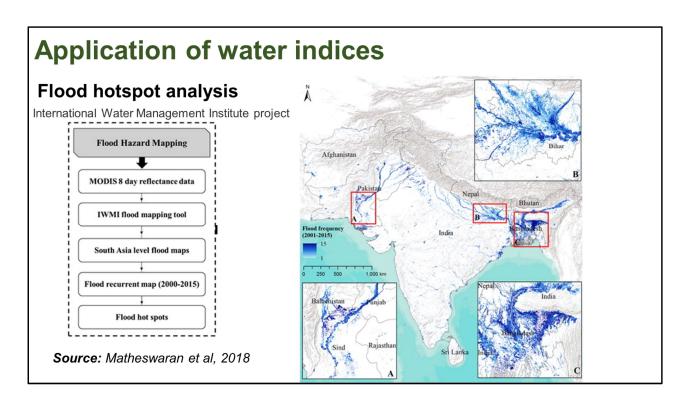
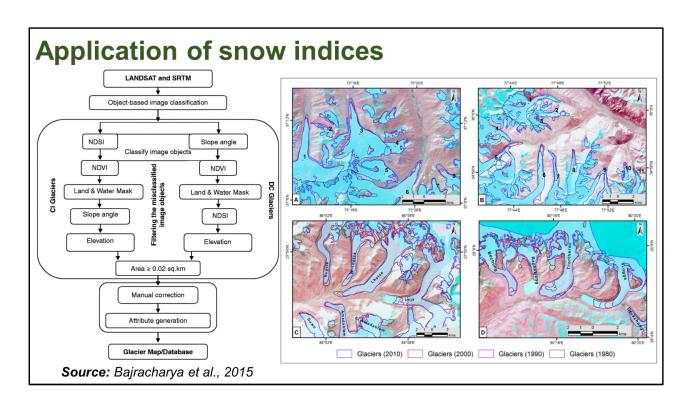

Water quality assessment

Table 3. Correlation coefficient analyses between water quality and spectral indices


Parameter	EC	pН	Nitrate	Nitrite	Silicate	Phosphate	О.М	NDSI	NDVI	NDBI	N/P ratio
EC	1										
pH	0.192	1									
Nitrate	0.106	0.173	1								
Nitrite	0.292	0.144	0.806	1							
Silicate	0.827	0.229	0.46	0.721	1						
Phosphate	-0.016	-0.353	-0.28	-0.069	-0.002	1					
O.M	-0.02	-0.339	-0.086	-0.185	-0.044	-0.03	1				
NDSI	-0.273	0.033	-0.416	-0.517	-0.272	-0.085	0.246	1			
NDVI	0.273	-0.033	0.416	0.517	0.272	0.085	-0.246	-1	1		
NDBI	-0.355	-0.006	-0.332	-0.516	-0.392	0.032	0.488	0.744	-0.744	1	
N/P ratio	-0.221	0.329	0.897	0.738	0.334	-0.171	-0.096	-0.345	0.345	-0.135	1.000

Source: Ahmed M. El-Zeiny, 2018

Source: Anthropogenic Impacts on Water Quality of River Nile and Marine Environment, Rosetta Branch Using Geospatial Analyses

Source: Flood risk assessment in South Asia to prioritize flood index insurance applications in Bihar, India

Source: The glaciers of the Hindu Kush Himalayas: current status and observed changes from the 1980s to 2010

