

Empowering Women in GIT-Pakistan

Dr. Poonam Tripathi 14 July 2020

GIS concepts and applications

INTRODUCTION TO GEOGRAPHIC INFORMATION SYSTEMS

What is GIS?

- > An organized integration of
- ➢ Hardware
- ➢ Software and
- ➤ Geographic system

🍣 Google Earth Pro

Majority of data and information are associated with some location in space or referenced to the locations on the earth

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 9 Band 10 Band 11 Band 12

 \mathbf{M}

865	38.43%			
		774	38.64%	7
592	26.30%	512	25.56%	4
439	19.50%	402	20.07%	3
197	8.75%	175	8.74%	1
49	2.18%	45	2.25%	
21	0.93%	17	0.85%	
13	0.58%	13	0.65%	
12	0.53%	12	0.60%	
10	0 80%		0.480	>
	197 49 21 13 12	197 8.75% 49 2.18% 21 0.93% 13 0.58% 12 0.53%	197 8.75% 175 49 2.18% 45 21 0.93% 17 13 0.58% 13 12 0.53% 12	197 8.75% 175 8.74% 49 2.18% 45 2.25% 21 0.93% 17 0.85% 13 0.58% 13 0.65% 12 0.53% 12 0.60%

Attributes, or the characteristics (data), can be used to symbolize and provide further insight into a given location

INFORMATION-Attributes

A seamless operation linking the information to the geography – which requires hardware, networks, software, data, and operational procedures

M

Functions of GIS

Data Acquisition and Preprocessing

Digitization, editing, topology, projection, format conversion

Database Management, Update and Retrieval

Data retrieval, Updation, Maintenance, Security and, Integration

 \mathbf{M}

Functions of GIS

Spatial Modeling, Measurement and Analysis

Hierarchical, Network, Relational modelling, Attribute query etc.

Presenting Results – Graphical output and Visualization

Scale transformation, Generalization, Map, Statistical representation etc.

hospitals lahore

× 🌷 🤇

- For informational purposes only. Consult your local medical autionty for advice. <u>Learn more</u>

Ad · www.oladoc.com/ -

Best Hospitals in Lahore | oladoc.com

Book Best Specialist Doctors at oladoc.com. Book Online or via App or Call Helpline. Avail upto 50% Discount on Doctor Fee Now!

Fundamental Data types

Spatial Information

Non-Spatial Information

Raster

- Defines space as an array of equally sized cells arranged in rows and columns.
- Each cell contains an attribute value and location coordinates
- Attribute value may be an elevation, land use class, plant biomass etc.
- The spatial resolution i determined by the size of the cell

Structure of raster data model showing the matrix structure into row and column of the cells

The spatial resolution is determined by the size of the cell

Plant species distribution in Indian mainland (a) plot level (0.04 hac), (b)1 degree grid, (c) 2 degree grid

Two forms of raster data

1) Continuous Raster

>Numeric values ranges smoothly

from one location to another

e.g. DEM, temperature etc.

2) Discrete Raster

adjacent cells.

➢ Relative few possible values to repeat themselves in

e.g. Soil type, Land use land cover type etc.

Vector

- Objects are represented as Points, Lines or Polygon
- The position of each object is defined by a (series of) coordinate pairs
- A point is described by a single X-Y coordinate pair and by its name or label v e.g. buildings, trees etc.
- A line and polygon are described by a set of coordinate pairs and by their name and label e.g. streams, streets, sewers, forest, rock type etc.

Topological property of vector data model

- Connectivity: Information about linkages among spatial objects.
- Arc node topology supported through an arcnode list. For each arc in the list there is a from node and a to node.
- Contiguity: Polygons share a common arc. Contiguity allows the vector data model to determine adjacency
- Containment: Geographic features cover distinguishable area on the surface of the earth. An area is represented by one or more boundaries defining a polygon

Conversion of vector to rater

Conversion of raster to vector

 $\underbrace{\mathsf{M}}_{}$

		Raster	Vector	
Data structure		Simple	Complex	D
Overlaying	age	Easy and efficient	Difficult to perform	isa
Compatible with RS imagery	ntc	Yes	No	dv
	Advantag	Efficient representation	In-efficient representation	anta
High spatial variability Programming by user	ব্ 	Yes	Complex	ge
Compact data structure	Ð	No	Yes	
Efficient encoding of topology	isadvantag	No	Yes	Adv
Easy editing	an	No	Yes	'an
Network analysis	>p	In-efficient	Efficient	ta
Map output	SQ	Less accurate	Accurate	ge
Projection transformation	D	In-efficient	Efficient	\widetilde{M}

Raster data file format

	RASTER	File	format		
	Esri Grid	info File fold file fold file fold TIF1.auxxml XML Dor TIF1.ovr OVR File	er cument		
It	Geographic Tagged Image File Format	3/7/2019 3:19 PM TFW File 3/7/2019 3:19 PM TIF File 3/7/2019 3:19 PM XML Document 3/7/2019 3:19 PM VMR File			
	Imagine image	TIF2.img Disc Image File TIF2.img.auxcml XML Document TIF2.md RRD File			
	American Standard Code for Information Interchange (ASCII)	.asc			
	Hierarchical Data Format	.hdf	1	VECTOR	File format
	Network Common Data Form (NetCDF)	.nc		Shape files	Name Lines.shp
	Joint Photographic Experts Group	.jpg			Points.shp Lines.shp Polygons.shp Lines.shx
				arkup Language (KML)	SireStations.kmz
			Layer	Rivers.lyr	
				Geodatabase	geodatabasesgdb Gass Gass Fegture Class Point Point Point Point Relationship Relationship
Vector data file format		Arc	Info Coverage	Coverage arc label polygon region.area tic	
			E00 A	rcInfo Interchange	📄 polygon.e00

Non-Spatial Data

Attribute Data

- Commonly arranged in tables where a row is equivalent to one entity and a column is equivalent to one **attribute**, or **descriptor**, of that entity
- Typically, each row relates to a single object and a geospatial data model
- Usually each object will have multiple attributes that describe the object

G	Q Nepal_population :: Features Total: 75, Filtered: − □ >						
/	1 🗟 🔁	🛱 🖬 🌱	🖻 🖹 i 😜	= 🔊 🔩	7 🔳 🏘 🗩		
	DISTRICT 🔻	POP_91	POP_81	TPOP_01	POP_011	st_COI	ZONE
31	MUSTANG	14292	12930	14981	13799	48	DHAWALA
32	MUGU	36364	43705	43937	55311	53	KARNALI
33	MORANG	674823	534692	843220	964709	9	KOSHI
34	MANANG	5363	7021	9587	6527	39	GANDAKI
35	MAKAW	314599	243411	392604	427494	34	NARAYANI
36	MAHOTT	440146	361054	553481	646405	21	JANAKPUR
37	LAMJUNG	153697	152720	177149	169104	37	

•Date: This data type stores dates and times in the format as 'mm/dd/yyyy hh:mm:ss'

GIS data capture and update of Vector feature

A	Raster		Vector	Grande 222 TED. Harden
	Digital Remote sensing images	lary	GPS measurements	GARMER
	Digital Aerial photographs	Prin	Survey measurements	 LULC Crop types Census
So this is a class in the second seco	Scanned Maps	ndary	Topographic surveys	> Biomass
Correct Control Contro	DEM from Images	Seco	Toponymy data from atlases	

GIS data capture and update of Vector feature

Digitization: Process of converting geographic data into vector data by tracing the features from a hardcopy, digital or a scanned image

- a) Manual:
- 1) Tablet Digitization : Involves placing a digitizing puck over a location on the tablet and presses one of the buttons on the puck to record the location of the feature of interest
- 2) On-screen Digitization: User generates vector data on desktop GIS by clicking on features that defines the entity
- **b)** Automated digitization : Scanning and vectorization

 \mathbf{M}

Digitalization Errors

(1) Dangles: Lines that are not connected

(2) Overshoots: Overextended line

(3) Undershoots: Gap exists between two intersecting line

(4) Slivers: Gaps between two adjoining polygons

(5) Switchbacks, Knots, and Loops: Digitized line with extra vertices and/or nodes due to unsteady

hand of the digitizer

 \mathbf{M}

A reference system to represent the locations of geographic features

Each coordinate system is defined by:

1) Measurement framework

- a) Geographic: Spherical coordinates are measured from the earth's center
- b) Planimetric: Earth's coordinates are projected onto a two-dimensional planar surface
- 2) Unit of measurement
- 3) Other measurement system properties such as a

spheroid of reference, a datum, and projection parameters Representation of globe showing parallels and meridians lines like one or more standard parallels, a central meridian, and possible shifts in the x- and y-directions

Geographic Coordinate System (GCS)

- Three-dimensional spherical surface to define locations on the earth
- A point is referenced by its longitude and latitude values that are the angles measured from the earth's center to a point on the earth's surface
- Vertical lines (north-south) are the lines of longitude, or meridians
- Horizontal lines (East–West) are the lines of equal latitude, or parallels

Geographic Coordinate System (GCS)

- The line of **latitude** midway between the poles is called the **equator**
- The prime meridian (zero longitude) is the longitude that passes through Greenwich, England
- The origin of the graticule (0, 0) is defined by where the equator and prime meridian intersect
- Coordinate value can be specified in DMS (degree, (-65°, 25°) minutes, seconds) or DD (degree decimel)
- Directions can be specified using E (east), W (west), N(north), S(south) or by sign plus (+) or minus (-)

Projected Coordinate System (PCS)

- PCS is a reference system for transforming the spherical three-dimensional earth into two-dimensional planar surfaces
- > Measuring features on a flat (map) surface
- PCS has constant lengths, angles, and areas across the two dimensions
- Locations are identified by planar x, y coordinates on a grid, with the origin at the center of the grid
- > The two values are called the x-coordinate and y-coordinate

 \mathcal{M}

Map Production

- Process of arranging Map elements on a sheet of paper Properties
- >Data frame
- ≻Title
- ≻Legends
- ≻Scale
- ≻North Arrow
- ≻Co-ordinates

- Mapping and monitoring
- Environmental Impact Analysis
- Biodiversity Assessment
- > Agricultural Applications
- ➢ Fire Risk Modelling
- Disaster Management and Mitigation
- Hazard and risk modelling
- > GIS for Planning and Community Development etc.

COVID-19 Tracker

Mapping and monitoring b. Urban Growth

Land use maps of Kathmandu Valley, 1967-2000

Source: Thapa and Murayama, 2008

Mapping and monitoring d. Land use land cover^{22°00}N

Classified LULC map of Mahanadi and Brahmaputra river basins for the year (a) 1985 (b) 1995 (c) 2005; and (d) predicted- 2005

0 30 60 120 180 240

Mapping and monitoring

e. Change dynamics

Source: Behera et al., 2017

Built-up (BU)
Crop land (CL)
Water body (WB)[#]
Mixed forest (MF)

Shrub land (SL)[#] Evergreen broad leaved forest (EBF)* Deciduous broad leaved forest (DBF)

2. Fire risk modeling

Equation used for modelling

FRI = 10LCR + 6TR + 4(SDR + RDR) + 2(ER + SLR)

LCR: land cover rating TR: temperature rating SDR: settlement distance rating RDR: road distance rating ER: elevation rating SLR: slope rating

Source: Matin et al., 2017

3. Habitat Suitability Analysis

- Suitability scores assigned to each of the factors (e.g., land cover types, topographic position classes) paying particular attention to the suitability
- A numerical weighting factor was assigned to each thematic layer according to the relative importance of habitat suitability.

Source: Uddin et al., 2019

Himalayan black bear

Leaf dear

4. Risk & Hazard Analysis

Flood susceptibility analysis

(Markham river basin, New Guinea)

Equation used for modelling

 $FSI = \sum FR,$

where FSI is the flood susceptibility index and FR is the frequency ratio for each factor.

 $\mathrm{FR} = (E/F)/(M/L),$

where E is the number of flood episodes for each factor; F is the total number of flood episodes; M is the histogram of a class; L is the total histogram of the study area.

Source: Samanta et al., 2018

4. Risk & Hazard Analysis

 $W_i = ln \frac{Density \ of \ landslide \ within \ a \ class \ of \ a \ factor}{Density \ of \ landslide \ within \ the \ study \ area}$

 $= ln \frac{\frac{Npix_{(Si)}}{Npix_{(Ni)}}}{\frac{\sum Npix_{(Si)}}{\sum Npix_{(Ni)}}}$

Where, W_i = Weight of a factor class;

Npix $_{(Si)}$ = Number of pixel of landslide within class i;

Npix $_{(Ni)}$ = Number of pixel of class i;

 $\Sigma N pix_{(Si)} = N umber of Pixel of landslide within the whole study area;$

 $\Sigma N pix_{(Ni)} = N umber of pixel of the whole study area.$

Class	LSI value	Description	Area in Square Kilometers	% Area of Map
1	-14.1493 to -9	Very Low	23.5449	1.81
2	-9 to -4	Low	330.9489	25.41
3	-4 to 0	Medium	602.1585	46.23
4	0 to 3	High	326.8251	25.09
5	3 to 8.5718	Very High	18.9441	1.45

Landslide Susceptibility Index Map

Landslide Susceptibility Class

Source: Bibek et al., 2015

5. Biodiversity Analysis

 $BR = \sum_{i=1}^{n} (DI_i \times wt_{i1} + TC_i \times wt_{i2} + SR_i \times wt_{i3} + BV_i \times wt_{i4} + EU_i \times wt_{i5})$

where BR = Biological Richness, DI = Disturbance Index, TC = Terrain Complexity, SR = Species Richness, BV = Biodiversity Value, EU = Ecosystem Uniqueness, and wt = Weights.

Biological

Forest / Non

Social

Power consumption map

Electricity distribution network map

Source: Adejoh et al., 2015

Thank you

Let's protect the pulse.